IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 1 of 79

National Aeronautics and Space Administration

IXPE-SOC-DOC-007 Revision D EFFECTIVE DATE: 2022-07-22

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

ST-12

IMAGING X-RAY POLARIMETRY EXPLORER (IXPE) SCIENCE OPERATIONS CENTER (SOC)

User Guide — Data Formats

IXPE Science Operations Center Data Formats of Level-1, Level-2 and CALDB Products

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 2 of 79

Signatures

PREPARED BY

Kurt Dietz /ES63 SOC Software Lead

APPROVED BY

Allyn Tennant /ST12 SOC Lead

Stephen L. O'Dell /ST12 Project Scientist

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 3 of 79

Revision Log

Date	Rev	Notes
2021-11-04	Baseline	Baseline version of this document.
2022-05-15	A	Changes to floating point in attitude files, PI column representation, additional instrument pipeline processing flags, other minor changes for reported discrepancies.
2022-04-04	В	Remaining STATUS2 flags defined, and order of STATUS flags as bits. Additional header keywords defined for Level 1 and 2 event data.
2022-06-22	С	Changes to "extension" HDU heading titles. Added Charge Map files and Periodic Peak Gain Map files in a new section called "Science Support File data format".
2022-07-15	D	Formatting changes to improve consistency with other IXPE User Guides

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 4 of 79

Table of Contents

1	Intro	duction	. 10
	1.1	Purpose	. 10
	1.2	Scope	. 10
	1.3	Audience	. 10
2	Refe	rences and Documents	. 10
3	Orga	anization and Responsibilities	. 11
4	Con	ventions and constants used in this document	. 11
	4.1	Directory and file name conventions	. 11
	4.2	Time Convention and Epoch	. 11
	4.3	TSTART and TSTOP convention	. 12
	4.4	Observation Segment UID convention	. 12
	4.5	FITS file default keywords and values	. 12
	4.5.1	Common Primary Header keywords	. 13
	4.5.2	2 Common Engineering and Science Event file Primary Header keywords	. 13
	4.5.3	Common SCI Event Primary Header keywords	. 14
	4.5.4	Common SCI Event Secondary Header keywords	. 15
	4.5.5	5 Default CALDB Primary Header keywords	. 16
	4.5.6	5 Default CALDB Secondary Header Keywords	. 17
	4.5.7	GTI extension secondary HDU header keywords.	. 17
	4.5.8	GTI extension binary table	. 18
	4.5.9	RUN_ID extension secondary header HDU keywords	. 18
	4.5.1	0 RUN_ID extension binary table	. 18
5	Leve	el-1 Science Event Data	. 19
	5.1	Description	. 19
	5.2	File naming convention	. 19
	5.3	Format	. 20
	5.3.1	Primary Header	. 20
	5.3.2	2 EVENTS extension header	. 20
	5.3.3	B EVENTS extension binary table	. 21
	5.3.4	GTI extension header	. 24
	5.3.5	GTI extension binary table	. 24
6	Leve	el-2 Science Event Data	. 24
	6.1	Description	. 24
	6.2	File naming convention	. 24
	6.3	Format	. 25
	6.3.1	Primary Header	. 25

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 5 of 79

	6.3.2	EVENTS extension header	. 26
	6.3.3	EVENTS extension binary table	. 27
	6.3.4	GTI extension header	. 28
	6.3.5	GTI extension binary table	. 28
7	Level-1	Engineering data format	. 28
	7.1 De	scription	. 28
	7.2 Fil	e naming convention	. 29
	7.3 He	ader Data Unit structure	. 29
	7.3.1	Header Data Unit structure of General Engineering Data Files	. 29
	7.3.2	Header Data Unit structure of Special Interest Engineering Data Files	. 30
	7.3.3	Primary Header format	. 31
	7.3.4	Secondary header (non GTI) format	. 31
	7.3.4.	1 Attitude data format	. 31
	7.3.4.	2 Orbital position data format	. 32
	7.4 Le	vel-2 GTI data format	. 33
	7.4.1	Description	. 33
	7.4.2	File naming convention	. 33
	7.4.3	Format	. 33
	7.5 Le	vel-1 Exposure Map	. 34
	7.5.1	Description	. 34
	7.5.2	File naming convention	. 34
	7.5.3	Format	. 34
	7.5.3.	1 Primary Header	. 34
8	Science	Processing CALDB data	. 35
	8.1 Ba	sic Telescope Data CALDB file	. 35
	8.1.1	Description	. 35
	8.1.2	Format	. 36
	8.1.2.	1 Primary HDU	. 36
	8.2 De	tector Unit (DU) Pixel equalization CALDB file	. 38
	8.2.1	Description	. 38
	8.2.2	Format	. 38
	8.2.2.	1 Primary HDU	. 38
	8.2.2.	2 PIXGAIN Extension: Header	. 38
	8.2.2.	3 PIXGAIN Extension: Table Columns	. 39
	8.3 De	etector Unit (DU) Noise Map CALDB file	. 39
	8.3.1	Description	. 39
	8.3.2	Format	. 39

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 6 of 79

8.3.2.	l Primary HDU	39
8.3.2.2	2 PIXNOISE Extension: Header	
8.3.2.	3 PIXNOISE Extension: Table Columns	40
8.4 De	ector Unit (DU) Pedestal Map CALDB file	40
8.4.1	Description	
8.4.2	Format	
8.4.2.	l Primary HDU	
8.4.2.2	2 PIXPEDS Extension: Header	
8.4.2.	3 PIXPEDS Extension: Table Columns	
8.5 De	ector Unit (DU) Bad-Pixel Map CALDB file	
8.5.1	Description	
8.5.2	Format	
8.5.2.	l Primary HDU	
8.5.2.2	2 BADPIX Extension: Header	
8.5.2.	BADPIX Extension: Table Columns	
8.6 De	ector Unit (DU) Peak Gain Map CALDB file	
8.6.1	Description	
8.6.2	Format	44
8.6.2.	l Primary HDU	44
8.6.2.2	2 PKGAIN Extension: Header	44
8.6.2.	3 PKGAIN Extension: Table Columns	44
8.7 De	ector Unit (DU) GEM High Voltage Gain Correction CALDB file	
8.7.1	Description	45
8.7.2	Format	
8.7.2.	l Primary HDU	
8.7.2.2	2 HVGAIN Extension: Header	
8.7.2.	3 HVGAIN Extension: Table Columns	
8.8 De	ector Unit (DU) Secular Gain Correction CALDB file	
8.8.1	Description	
8.8.2	Format	
8.8.2.	l Primary HDU	
8.8.2.2	2 SECVAR Extension: Header	
8.8.2.	3 SECVAR Extension: Table Columns	
8.9 De	ector Unit (DU) Temperature Gain Correction CALDB file	
8.9.1	Description	
8.9.2	Format	
8.9.2.	l Primary HDU	

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 7 of 79

8.9.2.2	TEMPGAIN Extension: Header	
8.9.2.3	TEMPGAIN Extension: Table Columns	
8.10 Detect	or Unit (DU) ASIC Correction CALDB file	
8.10.1 De	scription	
8.10.2 For	rmat	
8.10.2.1	Primary HDU	
8.10.2.2	ASICCORR Extension: Header	
8.10.2.3	ASICCORR Extension: Table Columns	
8.11 Detect	or Unit (DU) Spurious Modulation map CALDB file	
8.11.1 De	scription	
8.11.2 For	rmat	
8.11.2.1	Primary HDU	
8.11.2.2	SPMOD Extension: Header	
8.11.2.3	SPMOD Extension: Table Columns	
8.12 Payloa	ad sub-system alignment CALDB file	
8.12.1 De	scription	
8.12.2 For	rmat	
8.12.2.1	Primary HDU	
8.12.2.2	SYSTEM_ALIGNMENT Extension: Header	
8.12.2.3	SYSTEM_ALIGNMENT Extension: Table Columns	
8.13 Mirror	Module Unit (MMA) Encircled energy function CALDB	
8.13.1 De	scription	
8.13.2 For	rmat	
8.13.2.1	Primary HDU	
8.13.2.2	REEF Extension: Header	
8.13.2.3	REEF Extension: Table Columns	
8.14 Detect	or Unit (DU) Quantum efficiency CALDB	
8.14.1 De	scription	
8.14.2 For	rmat	
8.14.2.1	Primary HDU	
8.14.2.2	QE Extension: Header	
8.14.2.3	QE Extension: Table Columns	
8.15 MMA	Effective Area CALDB	
8.15.1 De	scription	
8.15.2 For	rmat	
8.15.2.1	Primary HDU	
8.15.2.2	AXEFFA Extension: Header	

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 8 of 79	

8.15.2	.3 AXEFFA Extension: Table Columns	59
8.16 MN	IA 2-D Point Spread Function CALDB file	59
8.16.1	Description	59
8.16.2	Format	59
8.16.2	.1 Primary HDU	60
8.16.2	.2 IMAGE Extensions: Header	60
8.17 MN	1A Vignetting CALDB file	61
8.17.1	Description	61
8.17.2	Format	61
8.17.2	.1 Primary HDU	61
8.17.2	.2 VIGNET Extension: Header	61
8.17.2	.3 VIGNET Extension: Tab;e Columns	62
8.18 MN	1A Thermal Shield Transmission CALDB	62
8.18.1	Description	62
8.18.2	Format	62
8.18.2	.1 Primary HDU	63
8.18.2	.2 TS_TRANS Extension: Header	63
8.18.2	.3 TS_TRANS Extension: Table Columns	63
8.19 Tele	escope Ancillary Response CALDB file	64
8.19.1	Description	64
8.19.2	Format	64
8.19.2	.1 Primary HDU	64
8.19.2	.2 SPECRESP Extension: Header	64
8.19.2	.3 SPECRESP Extension: Table Columns	65
8.20 DU	Modulation Factor CALDB	65
8.20.1	Description	65
8.20.2	Format	65
8.20.2	.1 Primary HDU	65
8.20.2	.2 SPECRESP Extension: Header	66
8.20.2	.3 SPECRESP Extension: Table Columns	66
8.21 DU	Modulation Response Function CALDB	67
8.21.1	Description	67
8.21.2	Format	67
8.21.2	.1 Primary HDU	67
8.21.2	.2 SPECRESP Extension: Header	67
8.21.2	.3 SPECRESP Extension: Table Columns	68
8.22 Tele	escope Response Matrix CALDB	68

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 9 of 79	

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 10 of 79

1 Introduction

The Imaging X-ray Polarimetry Explorer (IXPE) is a NASA mission in partnership with the Italian space agency (Agenzia Spaziale Italiana, ASI). IXPE provides the capability to measure the (linear) polarization of x rays from astrophysical sources. In addition, IXPE introduces the capability for x-ray polarimetric imaging, uniquely enabling measurement of x-ray polarization with scientifically meaningful spatial, spectral, and temporal resolution.

1.1 Purpose

This document describes common tasks associated with set-up, maintenance, and operational flow of SOC-developed software to create and analyze the various data products created, utilized, and consumed by the Science Processing software cycle.

The IXPE Science Operations Center (SOC), at NASA Marshall Space Flight Center (MSFC), provides ground support for science operations of this space-based observatory. The primary functions of the SOC are these:

- 1. Develop software and operations to transform an IXPE long-term (1 year at a time) target list into an annual observing schedule, based upon orbital and pointing constraints, and to generate weekly Instrument Activity Plans (IAPs) that will guide the commanding of the Observatory by the Mission Operations Center (MOC) at the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). This function is identified as "Mission Planning" or MP.
- 2. Develop software, calibration data, and operations to translate, correct, calibrate, and transform raw science telemetry into science data products for use by the IXPE Science Team and by the greater scientific community. This function is identified as "Science Processing" or SP.

Hence, the two major components of the IXPE SOC software are Mission Planning (MP) software and Science Processing (SP) software. The purpose of this document is to detail the operational use of the IXPE SOC Science Processing software modules and associated tasks involved with maintaining the processing environment.

1.2 Scope

This document is intended to describe naming conventions and file formats of publicly released data from the Imaging X-ray Polarimetry Explorer (IXPE).

1.3 Audience

This document is intended for users of publicly released IXPE data.

2 References and Documents

- 1. "The JSON Data Interchange Syntax", ECMA-404, European Computer Manufacturers Association. <u>https://www.ecma-international.org/publications-and-</u> <u>standards/standards/ecma-404/</u>
- 2. "ISO 8601 Date and Time Format", International Organization for Standardization. https://www.iso.org/iso-8601-date-and-time-format.html

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 11 of 79

- 3. "Overview of the FITS Data Format", <u>https://heasarc.gsfc.nasa.gov/docs/heasarc/fits_overview.html</u>
- 4. "The Calibration Requirements for Spectral Analysis", <u>https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_9</u> <u>2_002.html</u>

3 Organization and Responsibilities

The IXPE SOC is responsible for maintenance of this document and delivery of software and data products to NASA. Much of the Instrument-related software and calibration database (CALDB) were produced by the ASI Space Science Data Center (SSDC) with substantial contributions by the IXPE Instrument Team at Istituto Nazionale di Astrofisica (INAF) and at Istituto Nazionale di Fisica Nucleare (INFN).

4 Conventions and constants used in this document

4.1 Directory and file name conventions.

For all directory and file names and naming conventions, this document adheres to the following text conventions:

Regular text – static, exact-text portion of a directory or file name

Italics text - variable portion of the directory or file name

ALL CAPS ITALICS - installation-dependent root directory

For variable sections, the following naming sections are used repeatedly for files that employ date-time data in the filename:

YYYY – four-digit year (e.g., 2019)YY – two-digit year (e.g., 19 for 2019)MM – two-digit month (e.g., 01 = January)

DD – two-digit day of month (e.g., 15)

hh – two-digit, 24-hour hour of the day (e.g., 23 = 11 pm)

mm – two-digit minute of the hour (e.g., 05)

ss – two-digit second of the minute (e.g., 53)

vv – two-digit version number (e.g., 73)

4.2 Time Convention and Epoch

All engineering and science event timestamps, which are recorded by the IXPE spacecraft and sent to the ground along with engineering and event data, are converted to IXPE Time (IXT) and represented by the keyword "TIME" in the binary tables. IXT is measured in seconds in the Terrestrial Time (TT) system—meaning that seconds increase monotonically with no corrections for leap seconds—from the IXPE Time epoch.

The IXT epoch is recorded in each FITS data file using the FITS header keywords "MJDREFI" and "MJDREFF". MJDREFI stands for the Integer part of the Modified Julian Date

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 12 of 79	

representation of the reference time, and MJDREFF stands for the Fractional part. In this case, reference time is equivalent in meaning to IXT epoch.

For the IXPE mission, the IXT epoch time is defined as

UTC: January 1, 2017 at 00:00:00

```
TT: January 1, 2017 at 00:01:09.184
```

The offset between TT – UTC is (as of 2017) is therefore

TT - UTC = 69.184 seconds

Thus, the defined values for MJDREFI and MJDREFF are (in TT)

MJDREFI: 57754

MJDREFF: 0.00080074074074 = 8.0074074074E-4

The formula for converting IXT seconds into seconds since the start of the MJD epoch is

sec_M = (MJDREFI + MJDREFF) * 86400 + TIME

These apply to all descriptions in this document, of FITS data formats for engineering and science events.

4.3 TSTART and TSTOP convention

For the purposes of IXPE engineering and science data FITS files, the TSTART and TSTOP times refer to start and stop times of the observation, as determined with the best data available when the file is created. For Level-1 files, TSTART will be the earliest timestamp encountered in the file, and TSTOP will refer to the latest timestamp encountered in the data portion of the file, as the Level-1 files are created without knowledge of the contents of the engineering files that determine the start and the stop of an observation. For Level-2 files, TSTART is the start of the observation and TSTOP is the end of the observation, as determined from operational analysis of the engineering data.

4.4 Observation Segment UID convention

The Unique ID (UID) of an Observation Segment consists of a two-digit mission phase, a fourdigit target ID for that mission phase, and a two-digit segment number. The SOC further adopts a convention for numbering the four-digit Target ID to indicate the kind of target or observation being made. The table below describes the numbering range conventions for Target ID.

Target ID range	Description
0001 - 2499	Targets derived from the Long-Term Plan for the given mission phase
2500 - 4999	Targets of Opportunity for the given mission phase
5000 - 7499	Safe-mode intervals that occurred during the given mission phase (numbered sequentially)
7500 – 9999	Commissioning or diagnostic intervals (observations or operations not primarily for science)

Table 4-1: Observation Segment Target ID conventions

4.5 FITS file default keywords and values

Primary headers of each FITS file produced by the IXPE SOC contain keywords that describe data in the file and other information that applies to the entire file. They contain common keywords with specific usage and, in some cases, specific defined values. Some are mandatory

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 13 of 79

keywords as defined by HEASARC, while others are conventions used by IXPE to ensure that IXPE software can identify the contents of a file regardless of its name. In addition, Engineering and Science event data files contain not only an additional subset of common primary header keywords but also a Good Time Interval (GTI) secondary header, which is present in each file of these types. The following subsections describe these headers and the GTI secondary header.

4.5.1 Common Primary Header keywords

The following table lists keywords used in the primary header of each FITS file produced by the IXPE SOC. Per FITS file conventions, the Primary Header (or Header Data Unit, HDU) is an IMAGE type header, which typically does not contain image data. The common header keywords identify the spacecraft, instrument, detector, observation ID, times included in this file, and other identifying information. All keywords listed in the table are mandatory. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value, Range or Standard
TELESCOP	А	Telescope or mission, IXPE	'IXPE'
INSTRUME	А	Instrument of the telescope	'GPD', 'MMA', 'SC', 'DSU', e.g.
TIMESYS	А	Same as "TIMESYS" keyword in the header of EVENTS extension	'TT'
TIMEUNIT	А	Same as "TIMEUNIT" keyword in the header of EVENTS extension	ʻs'
MJDREFI	J	Start mission MJD (integer part), copied by the header of the EVENTS extension	57754
MJDREFF	D	Start mission MJD (fractional part), copied by the header of the EVENTS extension	0.00080074074074
ORIGIN	А	Location where the FITS file was created ("IAPS", "INFN", "MSFC")	'MSFC', 'IAPS'
DATE	А	FITS File creation date	'YYYY-MM-DDThh:mm:ss.ss'
FILENAME	А	Identifies the data by date, level, type, subtype, and version number by using the originally generated filename (in which this information is encoded) without the filename extension	See specific file type naming convention
FILETYPE	А	Brief description of the data type	See Table 4-4 below for values
CREATOR	А	Program that created the FITS file	
CREAT_ID	А	Unique ID of the creator (retained only for compatibility with I2T products)	
SOFTVER	A	HEASOFT & IXPE specific software version string	
CHECKSUM	А	HDU checksum	
DATASUM	А	Data unit checksum	

Table 4-2: Level-1	Common Primary	Header keywords
--------------------	-----------------------	-----------------

4.5.2 Common Engineering and Science Event file Primary Header keywords

The following table lists keywords used in the primary header of each engineering or science event FITS file produced by the IXPE SOC. These keywords are in addition to common

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 14 of 79

keywords defined in Section 4.4.1. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value, Range or Standard
DETNAM	А	Name of detector or system	'DU1', 'DU2', 'MMA1', e.g.
RADECSYS	А	Name of coordinate system for RA and Dec.	'ICRS'
EQUINOX	E	Equinox of celestial coordinate system	2000.0
RA_OBJ	E	Right Ascension of object. (deg)	RA_OBJ
DEC_OBJ	E	Declination of object (deg)	DEC_OBJ
TSTART	D	Observation start time in IXT, relative to MJDREF	
TSTOP	D	Observation end time in IXT, relative to MJDREF	
TELAPSE	D	Elapsed time, TSTOP-TSTART	
TIMEREF	А	Time reference ("LOCAL", "SOLARSYSTEM", "HELIOCENTRIC", or "GEOCENTRIC")	'LOCAL'
DATE-OBS	А	[TT] Date of start of observation in "isot" format	'YYYY-MM-DDThh:mm:ss.ss'
DATE-END	А	[TT] Date of end of observation in "isot" format	'YYYY-MM-DDThh:mm:ss.ss'
PROCVER	А	Processing version	
CALDBVER	Α	Version of the Calibration index that gives the calibration file list used during processing	

 Table 4-3: Engineering data Primary Header keywords

Table 4-4: Engineering and Science FILETYPE values

File description	Level-1 FILETYPE	Level-2 FILETYPE
Attitude Determination and Control System ADCS (Engineering)	ENG ADC <apid> 1</apid>	N/A
Temperature (Engineering)	ENG TEMP <apid> 1</apid>	N/A
Payload (Engineering)	ENG PAYLOAD <apid> 1</apid>	N/A
Attitude (Engineering)	ENG ATTITUDE 1	N/A
Orbital position (Engineering)	ENG ORBITAL 1	N/A
Level-2 Good Time Intervals	ENG GTI 1	N/A
Science events	SCI EVENT 1	SCI EVENT 2
Raw payload engineering	N/A	N/A
CALDB file	N/A	N/A

NB: In Table 4-4, the string value "iiii" indicates the 4-digit numerical Application ID (APID).

4.5.3 Common SCI Event Primary Header keywords

The following table lists keywords required in the Primary HDU of each science event FITS file. Note that keywords defined in Sections 4.4.1 and 4.4.2 are also required in the Primary Header of each science event FITS file. Additional keywords unique to certain sub-types of event files will be described later for each of those files. Note that for science event files, the "INSTRUME" value is always "GPD", and the "DETNAM" value is always one of either "DU1", "DU2", "DU3", or "DU4".

Keyword Name	Туре	Description
CLOCKCOR	A	whether time (TSTART, TSTOP) given in the system defined by TIMESYS has been corrected for any drift in spacecraft clock relative to UT ("YES", "NO", "UNKNOWN")

Table 4-5: Science Event Common Primary Header values

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 15 of 79

DET_ID	А	Name of the physical ID of the detector which corresponds to the given DETNAM. Note: Both "DETNAM" and "DET_ID" in an input file must match the same-name values in the CALDB files in order to process the data. For flight, the default mapping is: DU1 = DU FM2, DU2 = DU FM3, DU3 = DU FM4 (DU FM1 is the flight spare)		
FCW_CMD	I1	Commanded value of the encoder of the Filter and Calibration Wheel		
FCW_ENC	I1	Readout value of encoder of the Filter and Calibration Wheel position		
FCW_POS	B1	Position of Filter and Calibration Wheel (0 - 6)		
FILE_TYP	А	File type (e.g., 'EVENT' or "HK")		
FILE_LVL	А	Level of file of this type (e.g., "A", "1")		
FILE_VER	А	Version of the file format for this type and level (e.g., '1.0')		
LV1_VER	Ι	Level-1 version, which currently must be at least 5. (Retained for compatibility with existing processing software)		
OBS_ID	J1	Observation ID (only in Level 1 and 2)		
OBS_MODE	AI	 DU Observation mode "OBSERVATION" for Astrophysical and calibration sources in flight; for sources on ground "STAND BY" (not expected to produce TM) "ELECTRICAL CALIBRATION" (charge injection) "PEDESTALS" 		
PADYN	E	Position angle of detector Y axis		
TXDZN	E	Offset of detector x-axis origin from center of image		
TYDZN	E	Offset of detector y-axis origin from center of image		
SRC_CONF	A	 NOT USED IN FLIGHT. GROUND USE ONLY. Source configuration: "ASTRO" for Astrophysical sources "CAL n" where n is the integer of the calibration source used for calibration in flight "INFN SET-UP n" where n is the set-up progressive number "IAPS SET-UP n" where n is the set-up progressive number "MSFC SET-UP n" where n is the set-up progressive number "MSFC SET-UP n" where n is the set-up progressive number 		

4.5.4 Common SCI Event Secondary Header keywords

The following table lists keywords in each Secondary HDU of a SCI event file. Note that keywords defined in Section 4.4.1 should also be present in secondary headers of each science event FITS file. Additional keywords unique to certain sub-types of event files will be described later for each of those files. Note that for science event files, the "INSTRUME" value is always "GPD", and the "DETNAM" value is always one of either "DU1", "DU2", "DU3", or "DU4". This section does not define those keywords present in the GTI header.

Variable name	Туре	Description
CALDBVER	А	Version of Calibration index that gives the calibration file list used during processing
CL_FREQ	Ι	Clock frequency of the serial readout in MHz
CL_SHIFT	Ι	Clock shift in ns
CLOCKCOR	А	whether time (TSTART, TSTOP) in the system defined by TIMESYS has been corrected for any drift in the spacecraft clock relative to UT ("YES", "NO", "UNKNOWN")
DATE-OBS	А	[TT] Date of start of observation in "isot" format
DATE-END	А	[TT] Date of end of observation in "isot" format

Table 4-6.	Science	Evont	Common	Secondary	Hoodor volues
1 able 4-0:	Science	Event	Common	Secondary	neauer values

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 16 of 79

DETNAM	А	Name of Detector Unit of the instrument
		• DU1, DU2, DU3, DU4 in flight
		• 018, 019, 020, etc. on ground
DET_ID	А	See Section 4.5.3
FCW_POS	В	Position of Filter and Calibration Wheel (0 - 6)
FILE_TYP	А	File type (e.g., "EVENT" or "HK")
FILE_LVL	А	Level of file of this type (e.g., "A", "1")
FILE_VER	А	Version of file format for this type and level (e.g., '1.0')
LV1_VER	Ι	Level-1 version, which currently must be at least 5 (Retained for compatibility with existing processing software)
INSTRUME	А	Instrument of the telescope, GPD
MJDREFI	Ι	Integer part of reference time MJD (=57754)
MJDREFF	D	Floating point part of reference time MJD (=0.00080074074074)
OBS_MODE	А	 DU Observation mode "OBSERVATION" for astrophysical and calibration sources in flight; for sources on ground "STAND BY" (not expected to produce TM) "ELECTRICAL CALIBRATION" (charge injection) "PEDESTALS"
PEDSADEL	Ι	Time delay between signal readout and each successive pedestal readout (in steps of µs)
PROCVER	А	Processing version (e.g., "1.0")
RO_MODE	Ι	GPD readout mode (windowed or full frame)
ROIPADD	В	Lookup-table code for window padding mode (small or large)
SOFTVER	А	Software version (includes HEASARC version string)
TELAPSE	D	Elapsed time (TSTOP – TSTART)
TELESCOPE	А	Telescope or mission, (= 'IXPE')
TIMEREF	А	Time reference (= 'LOCAL')
TIMESYS	А	Time system (= 'TT')
TIMEUNIT	А	Unit of time (= 's') seconds
TIMEZERO	D	Start time for event times in the given table, in IXT. If the keyword is missing, or the value is 0, this indicates that event times are full IXT time, not offsets from the start.
TLM2FITS	А	Software version number in the form AA.BB, where AA is the major version and BB is the minor version
TRGENDEL	Ι	Time delay between the last pedestal readout and the next trigger enable in μ s
TRG_THR	D	Nominal first trigger threshold in mV with respect to reference voltage vref (rounded to 1 decimal place)
TRK_FULL	Ι	0 = No, 1 = Yes
TSTART	D	Observation start time in IXT, copied by the header of the EVENTS extension
TSTOP	D	Observation end time in IXT, copied by the header of the EVENTS extension
ZSUPTHR	Ι	Threshold in Analog-to Digital Converter (ADC) counts for the on-board zero suppression
CHECKSUM	А	HDU Checksum
DATASUM	A	Data unit checksum

4.5.5 Default CALDB Primary Header keywords

The following table lists keywords used in the primary header. This primary header is used to identify spacecraft, instrument, software that produced the file, and other identifying information. All keywords listed in the table are mandatory. Data type codes used in the "Type" column are defined in Appendix B.

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 17 of 79		

Keyword Name	Туре	Description	Value/Range
TELESCOP	А	Telescope or mission, IXPE	"IXPE"
ORIGIN	А	Location where the FITS file was created	("IAPS", "INFN", "MSFC")
CHECKSUM	А	ASCII-encoded complement of the checksum of the FITS HDU: 16-character string starting in column 12	
DATASUM	J	Value of the checksum of the data records of the HDU	
CREATOR	А	Software that produced the file	'ixpecalibconverter', e.g.
CREAT_ID	A	Unique ID of the creator (retained for compatibility with I2T products)	

Table 4-7: Default CAL	DB Primary Header	keywords
------------------------	--------------------------	----------

4.5.6 Default CALDB Secondary Header Keywords

The following table lists keywords used in CALDB secondary header. This secondary header is a binary table header. Keywords defined in this section are those that are involved with neither the definition of the binary table shape nor the names, types, and units of the table columns. All header keywords from the Primary Header are repeated in the secondary header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example		
EXTVER	J	Extension number of this HDU	1		
VERSION	J	Extension version number	1		
DATE	J	File creation date (TT) in "isot" format.	'2020-05-03T06:21:33', e.g.		

Table 4-8: Default CALDB Secondary Header keywords

4.5.7 GTI extension secondary HDU header keywords.

The Level-2 Science Event data file GTI extension header describes the overall time boundaries of data within the file, and the means by which time is measured. It also includes version information about file format, version of the firmware in the DU at the time, and run and station identifiers of the DU to describe fully how the data was acquired.

The following table defines keywords and data types of data in the GTI extension header. All keywords listed in the table are mandatory. Data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description
DATE-OBS	А	[TT] Date of start of observation in "isot" format
DATE-END	А	[TT] Date of end of observation in "isot" format
INSTRUME	А	Instrument of the telescope (e.g., "GPD")
MJDREFI	J	Start mission MJD (integer part), copied by the header of the EVENTS extension
MJDREFF	D	Start mission MJD (fractional part), copied by the header of the EVENTS extension
PROCVER	А	Processing version
SOFTVER	А	Software suite version (include HEASOFT string)
TELAPSE	D	Elapsed time, TSTOP-TSTART
TELESCOP	А	Telescope or mission (= 'IXPE')
TIMEREF	А	Time reference (= 'LOCAL')
TIMESYS	А	Time System (= 'TT' for mission)
TIMEUNIT	А	Same as "TIMEUNIT" keyword in the header of EVENTS extension

Table 4-9: GTI header keyword description

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007 Revision: D			
	Effective Date: 2022-07-22	Page: 18 of 79		

TIMEZERO	D	Start time for event times in the given table, in IXT. If the keyword is missing, or the value is 0, this indicates that event times are full IXT time, not offsets from the start
TSTART	D	Observation start time in IXT, relative to MJDREF
TSTOP	D	Observation end time in IXT, relative to MJDREF
CHECKSUM	А	HDU Checksum
DATASUM	А	Data unit checksum

4.5.8 GTI extension binary table

The Engineering and Science Event data GTI extension binary table rows give start and stop (in IXPE Time (IXT) seconds) of a single "Good Time Interval" contained within the time bounds of the overall file. The table defines the times within the overall time bounds of the file for which continuous data are contained within the file.

For all Engineering data and all Science event data except Level-2 data, the GTI table reflects all intervals for which data have been received and processed at the SOC.

For Level-2 Science event data, the GTI table reflects all the intervals that satisfy all the following conditions:

- Data have been received and processed at the SOC
- Spacecraft was actively pointing to the given target
- Detectors were properly configured to observe the target
- Spacecraft was outside the SAA model polygon
- Object was occulted by neither the earth nor the moon

The following table defines column names and data types of data in the GTI binary table extension. All keywords listed in the table are mandatory. Data type codes used in the "Type" column are defined in Appendix B.

Table 4-10: GT	l binary table	description
----------------	----------------	-------------

Column Name	Туре	Description
START	D	Start of time interval (IXT)
STOP	D	End of time interval (IXT)

4.5.9 RUN_ID extension secondary header HDU keywords

The Science Event data files include a RUN_ID extension header, which contains information about the RUN_ID variable used for processing by some I2T software. The extension holds a table that gives the value of RUN_ID and start and stop times of the interval for which that value is valid. The header information contains the same information as the "EVENTS" extension of a Science Event data file. See Section 4.4.3 of this document.

4.5.10 RUN_ID extension binary table

The Engineering and Science Event data GTI extension binary table rows give RUN_ID value and start and stop (in IXPE Time (IXT) seconds) of the interval over which this value is valid.

The following table defines the column names and data types of the data in the RUN_ID binary table extension. All keywords in the table are mandatory. Data type codes used in the "Type" column are defined in Appendix B.

Table 4-11: RUN_	ID binary tal	ole description
------------------	---------------	-----------------

		- •	-
Column Name	Туре	Description	

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007 Revision: D			
	Effective Date: 2022-07-22	Page: 19 of 79		

RUN_ID	Ι	Run ID valid over this interval.
START	D	Start of time interval (IXT)
STOP	D	End of time interval (IXT)

5 Level-1 Science Event Data

5.1 Description

Level-1 Science Event data contain the same information as Level-0 Science Event data but converted to FITS format. This is in keeping with the HEASARC rules for Level-1 data, which contain additional information (see below). Level-1 science event files convert raw input packets from the instrument and spacecraft, and they maintain all raw track data information from Level-0 Science Event data. Level-1 data and files are ordered by time at which the events were recorded by the detector, and these times have been converted to IXPE Time, which is offset from the raw Level-0 timestamps by a constant.

Level-1 raw event track data are expanded from the raw DU event data in Level 0. There, the pixels are run length encoded to omit all pixels below a given threshold. In the Level-1 Science Event data, these images are reconstructed as two-dimensional image data arrays, with all pixels omitted in the Level-0 encoding filled in with 0-value pixels.

Level 1 contains header keywords pertinent to ixpeevtrecon processing. The value of these keywords is derived from HK data. The ixpeevtrecon program expects values for these keywords to be constant for all data in a single file. Therefore, if configuration values change during an observation, the Level-1 files are split to ensure the configuration values are constant within each component.

Level-1 data are processed by ixpeevtrecon, from which the barycenter measurement of the position and the Pulse Height Amplitude of the event are calculated.

Level-1 data are also processed by ixpedet2j2000, which adds columns X, Y. The columns represent the J2000 tangent-plane coordinates centered on the tracking target, in which X is parallel to the celestial equator and Y is perpendicular (oriented to the NCP) to the celestial equator.

5.2 File naming convention

Level-1 Science Event data file names are of the form

```
ixpePPnnnnpp_detD_evt1_vxx[_cii].fits
```

Variable parts of the name are indicated by *italics*. Optional parts of the name are included in square brackets [] and only appear in the filename when necessary. Description, references, and range or list of valid values are given in the table below.

Variable	Description	Range or Values
PPnnnnpp	IXPE observation Sequence Number	
D	Project designated identification number of DU	1, 2, or 3 (in flight)
xx	Two-digit file version number	01 – 99

 Table 5-1: Level-1 Science Event data naming variable description

IXPE Science Operations Center				
Title: User Guide — Data Formats Document No.: IXPE-SOC-DOC-007 Revision: D				
	Effective Date: 2022-07-22	Page: 20 of 79		

ii	Two-digit optional component file index for observation segment datasets	01 – 99 (if present)
	that are so large they must be divided into smaller pieces	

5.3 Format

The format for Science Event data at Levels 1 Science Event data is FITS file with four HDU's. All the extensions are FITS binary table extensions. The structure of the file consists of the following FITS sections.

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 2	RUN_ID	A table of RUN_IDs with start and stop times that indicate the valid interval for each RUN_ID
Extension 3	EVENTS	Photoelectron track image data, flags, and DU information
Extension 4	GTI	Binary table of start and stop times for each interval of continuous (no missing event data packets) data

Table 5-2: FITS structure of Level-1 Science Data file

The structure and keywords of the header and binary table extensions are detailed in the subsections below.

5.3.1 Primary Header

The following table lists keywords used in the primary header. This header includes all header data from Sections 4.5.1, 4.5.2, and 4.5.3, as well as the keywords in the table below. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description
ENERGY	D	Energy of x-ray source (keV). (Optional, used on in ground tests)
RUN_DESC	А	Type of test (Optional, used on ground tests only)
SOURCE	А	X-ray source (Optional, used in ground tests only)

 Table 5-3: Level-1 Science Event data Primary Header keywords

5.3.2 EVENTS extension header

Level-1 Science Event data EVENTS extension header describes the parameters of the recorded observation itself, including time data that are largely repeated from the primary header. It also includes operational parameters of the DU in use during the observation.

The following table defines keywords and data types of data in the EVENTS header extension. All keywords listed in Sections 4.5.1, 4.5.2, and 4.5.4 are included, as well as keywords defined in the following table. Data type codes used in the "Type" column are defined in Appendix B.

Variable name	Туре	Description
ACOLCORR	D	Coherent noise offset
ATRGCORR	D	Trigger mini-cluster offset
D_MAX	D	External radius of the horseshoe search region
D_MIN	D	Internal radius of the horseshoe search region
DEADAPP	В	"T" or True if the dead time correction has been applied

 Table 5-4: Level-1 Science Events data EVENTS header description

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 21 of 79

ENERGY	D	X-ray source energy (keV) (for ground test only)
FLTNAM	А	Flight detector name
RA_OBJ	Е	Right Ascension of object. (deg)
DEC_OBJ	Е	Declination of object (deg)
EQUINOX	D	Equinox of celestial coordinate system (= 2000.0)
RADECSYS	А	Celestial coordinate system (= "ICRS")
MAXROISI	Ι	The maximum ROI size in pixels
MINDNSPT	Ι	Minimum density points for the DBSCAN clustering
MINROISI	Ι	The minimum ROI size in pixels
MINTKHIT	Ι	Minimum number of hits in a track
NUM_PED	Ι	Number of events acquired for pedestal subtraction
OBSID	А	Observation ID
ONTIME	E	Engineering-defined exposure time (sec) minus any gaps in event data
ORBIT	J	Orbit during which data were downloaded
ORIGIN	А	Location where the FITS file was created ("IAPS", "INFN", "MSFC")
PKTTYPE	Ι	Packet Type
PKTSTYPE	Ι	Packet Sub-Type
ROIPADD	Ι	The lookup-table code for the window padding
RUN_DESC	А	Type of test (for ground test only)
SOURCE	Α	X-Ray source description (For ground test only)
SRC_CONF	A	Source configuration
TCTYPE38	A	"RATAN" indicates that the X column is in tangent plane coordinates and the axis is parallel to Right Ascension
TCRPX38	J	Array location of the horizontal reference point in pixels (= 299)
TCRVL38	E	Array value at horizontal reference point (= target center RA)
TCDLT38	E	Coordinate increment on horizontal axis (image scale in deg/pixel) (= -0.00072222)
TCROT38	E	Rotation of horizontal axis at reference point $(= 0.)$
TCUNIT38	Α	Units of CDELT1 and CRVAL1. (= 'deg')
TCTYPE39	A	"DEC—TAN" indicates that the Y column is in tangent plane coordinates and the axis is parallel to Declination
TCRPX39	J	Array location of the horizontal reference point in pixels. (= 299)
TCRVL39	Е	Array value at horizontal reference point (=target center RA)
TCDLT39	Е	Coordinate increment on horizontal axis (image scale in deg/pixel) (= 0.00072222)
TCROT39	Е	Rotation of horizontal axis at reference point (=0.)
TCUNIT39	А	Units of CDELT1 and CRVAL1. (= 'deg')
XPNOIMAP	В	"T" or True to indicate that the noise map CALDB was applied to the events in this file.
XPPEDMAP	В	"T" or True to indicate that the pedestal map CALDB was applied to the events in this file.
XPPEQMAP	В	"T" or True to indicate that pixel equalization CALDB was applied to events in this file
W_SCALE	D	Scale factor for the exponential weights used during analysis

5.3.3 EVENTS extension binary table

Each raw DU event in the Level-0 Science Event data is used to create a row in the EVENTS extension binary table of the Level-1 Science Event data. Thus, the rows of the EVENTS extension binary table contain the same information as the original Level-0 raw DU event. The exception to this is the absorption event image data. In Level-0, the data are compressed by runlength encoding only the pixels above a certain threshold. In Level-1 events, these data are used

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 22 of 79

to populate the pixels of a two-dimensional sub-image from the DU, with all pixels not described explicitly by the Level-0 data set to a value of zero.

It is important to note that the variable-length portion of this binary table, the zero-filled, twodimensional image data of the x-ray absorption event called PIX_PHAS in the binary table, is stored, according to FITS file rules, at the end of the fixed-length table in a data heap. The fixedlength table actually contains a pointer and a length to the position of the actual array data in the heap. This has implications for adding events to an existing EVENTS binary table, because doing so forces not only new data to be written into the fixed-length portion, but movement of the entire variable-length heap and writing of the variable length data into the newly relocated heap. That makes this an inefficient operation that should be mitigated by pre-figuring the total size of the fixed-length binary table before writing any events to the EVENTS binary table.

In addition, there are columns for the rough PHA energy of the pixels in the event image, and for the position on the J2000 tangent plan, which are the result of a preliminary aspect correction of rough positions calculated from the event.

Table 5-5 defines the column names and data types of the data in the EVENTS binary table extension. All the keywords listed in the table are mandatory. The data type codes used in the "Type" column are defined in Appendix B.

Column Name	Туре	Description
PAKTNUMB	J	Packet number
TRG_ID	J	The trigger identifier. The use of trigger ID, instead of event ID, is to emphasize that the DAQ can discard triggers based on the ROI size
SEC	J	Integer part of event time in seconds (IXPE time)
MICROSEC	J	Fractional part of event time in microseconds (IXPE time)
TIME	D	Seconds since time reference
LIVETIME	J	Detector live time in microseconds since the previous event
MIN_CHIPX	Ι	The minimum column number in the ROI
MAX_CHIPX	Ι	The maximum column number in the ROI
MIN_CHIPY	Ι	The minimum row number in the ROI
HDUCLASS	А	HDU class. Must be set to "OGIP"
HDUCLAS1	А	Secondary HDU Class. Must be set to "EVENTS"
MAX_CHIPY	Ι	The maximum row number in the ROI
ROI_SIZE	J	The size of the ROI
ERR_SUM	J	The error summary for the event
DU_STATUS	Ι	DU-supplied status bytes
DSU_STATUS	Ι	DSU-supplied status bytes
PIX_PHAS	QI	Amplitude (in ADC channels) of all pixels in the ROI
PIX_PHAS_EQ	QI	Amplitude (in scaled corrected ADC channels) of all pixels in the ROI, corrected for pixel equalization
STATUS	16X	16-bits of processing status/error flags
STATUS2	16X	16-bits of processing status/error flags
NUM_CLU	Ι	Number of clusters in event
NUM_PIX	Ι	Number of pixels in event
EVT_FRA	E	Event frame
SN	E	Signal-to-noise ratio

Table 5-5: Level-1 Science Events data EVENTS binary table description

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 23 of 79

	-	
TRK_SIZE	Ι	Track size
TRK_BORD	Ι	Track border
PHA	J	Total event PHA signal
TLMINn	Ι	Start channel for PHA (1). Note: n must be column number of PHA
TLMAXn	Ι	Start channel for PHA (60000). Note: n must be column number of PHA
PHA_EQ	E	Pixel-equalization and gain-corrected event signal
PHI1	E	Initial electron ejection angle, from stage-1 computation
PHI2	E	Initial electron ejection angle, from stage-2 computation
DETPHI	E	Best estimate of initial electron ejection angle for detector
ABSX	E	Calculated detector position in detector x-coordinate (mm)
ABSY	E	Calculated detector position in detector y-coordinate (mm)
BARX	E	Barycenter-computed detector position of x-coordinate (mm)
BARY	E	Barycenter-computed detector position of y-coordinate (mm)
TRK_M2T	E	Second moment of track T
TRK_M2L	E	Second moment of track L
TRK_M3L	E	Third moment of track L
TRK_SKEW	E	Skewness of track
Х	Е	Calculated position, projected onto the J2000 tangent plane axis parallel to celestial equator using the preliminary aspect correction
Y	Е	Calculated position, projected onto the J2000 tangent plane axis perpendicular to celestial equator using the preliminary aspect correction

The STATUS2 value is a 16-bit field of logical flags that can be used to mask out certain events. The definition of the STATUS2 flags is given in the table below.

Note that the order of the flags maps to the 16 bits of an integer by starting at the left-most (i.e., flag 0 maps to the most significant bit of the integer value.) Also note that in Level 2 data, only flags 1, 12, and 15 should appear, as the rest of the flags are filtered out.

Table 5-6: STATUS2 bit description

Flag	Description
0	Set when no attitude data exists for this event
1	Set when the GPS position is not valid
2	Set when the DSU mode is not OBSERVATION
3	Set when the S/C ADCS mode is not "pointing"
4	Set when FCW is set to CAL_POL
5	Set when FCW is set to CAL_SPOT
6	Set when FCW is set to CAL_HI
7	Set when FCW is set to CAL_LO
8	Set when FCW is set to CLOSED
9	Set when the S/C is slewing
10	Set when target is occulted by the upper occultation radius
11	Set when target is occulted by the lower occultation radius
12	Set when the position of the satellite indicates it is within the boundaries of the SAA
13	Set when an event lies within one of the designated edge-exclusion regions of the bad pixel map
14	Set when an event lies within a designated anomaly-exclusion region of the bad pixel map
15	Set when an event lies within a designated "GRAY" exclusion region (edge or anomaly) of the bad pixel map

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 24 of 79

5.3.4 GTI extension header

The Level-1 Science Event data file GTI extension header describes the overall time boundaries of the data within the file, as well as the means by which time is measured. Header keywords are defined in Section 4.5.7, and additional keywords are defined in the following table.

Keyword Name	Туре	Description	
CL_FREQ	Ι	The clock frequency of the serial readout in MHz	
CL_SHIFT	Ι	The clock shift in ns	
DEADAPP	Logical	Flag indicating if dead time correction has been applied ('T' if True, 'F' if False)	
DEADC	D	The ratio of LIVETIME/ONTIME values	
HDUCLASS	А	HDU class. Must be set to "OGIP" (Level 1)	
HDUCLAS1	А	Secondary HDU Class. Must be set to "GTI" (Level 1)	
LIVETIME	D	Sum of LIVETIME column for all unfiltered events within the valid GTI of the file, converted to seconds (Seconds)	
ONTIME	D	Engineering-defined exposure time, minus any intervals of science data not received on the ground (seconds)	
OBS_MODE	А	DSU Observation mode (usually = 'OBSERVATION')	

Table 5-7: GTI header keyword description

5.3.5 GTI extension binary table

Level-1 Science Event data GTI extension binary table rows give the start and stop (in IXPE time seconds) of a single "Good Time Interval" contained within the time bounds of the overall file. The table defines times within the observation or segment bounds for which continuous event data was received by the SOC. It does not account for pointing, position, or spacecraft state.

6 Level-2 Science Event Data

6.1 Description

Level-2 Science Event data files are FITS format files that contain highly processed event data produced by the Instrument Pipeline. The Instrument Pipeline produces a refined detector position; a Pulse Invariant energy that has been corrected for pixel-to-pixel, temporal, thermal, charging, and large-scale spatial gain; and an initial electron ejection direction resolved into Stokes parameters and corrected for spurious modulation.

Level-2 data are further processed by ixpedet2j2000 and ixpeaspcorr to convert the detector coordinate positions and electron directions to the J2000 tangent plane centered on the target. Not only are detector coordinates transformed by the measured system rotations and the measured Star Tracker rotations, but the resultant image is analyzed and corrected on smaller timescales to add correction for potential thermal effects.

Level-2 files will only contain events that are from times during which the instrument was on, correctly configured for observing, pointed at the target, and not occulted by the earth or its atmosphere. In addition, certain flagged data values may be removed to clean the data set.

6.2 File naming convention

The Level-2 Science Event data file names are of the form

```
ixpePPnnnnpp_detD_evt1_vxx[_cii].fits
```

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 25 of 79	

The variable parts of the name are indicated by *italics*. The optional parts of the name are included in square brackets [], and only appear in the filename when necessary. The description, references, and range or list of valid values are given in the table below.

Variable	Description	Range or Values
PPnnnnpp	The IXPE observation Sequence Number	
D	Project designated identification number of DU	1, 2, or 3 (in flight)
Vv	Two-digit version number	01 – 99
li	Optional component file index for observation segment datasets that are so large they must be divided into smaller pieces	01 – 99 (if present)

6.3 Format

The Level-2 Science Event data format consists of a FITS file with three HDU's. All the extensions are FITS binary table extensions. The structure of the file consists of the following FITS sections:

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 2	EVENTS	Photoelectron track image data, flags, and DU information
Extension 3	GTI	Contains the Good Time Intervals.

 Table 6-2: FITS structure of Level-2 Science Data file

6.3.1 Primary Header

The following table lists keywords used in the primary header. All the keywords listed in Sections 4.5.1, 4.5.2, and 4.5.3 are included, as well as the keywords defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description		
CONTNUMB	J	Contact Number (progressive within a contact)		
ORIGIN	А	Location where the FITS file was created ("IAPS", "INFN", "MSFC")		
RA_OBJ	E	Right Ascension of object (deg)	Right Ascension of object (deg)	
DEC_OBJ	E	Declination of object. (deg)		
EQUINOX	D	Equinox of celestial coordinate system	2000.0	
RADECSYS	А	Celestial coordinate system	'ICRS'	
POLCCONV	А	Polarization coordinate convention	'IAU'	
XPCHRG	Bool	"T" if charging correction applied; "F" otherwise		
XPNOIMAP	Bool	"T" if appropriate CALDB noise map was applied; "F" otherwise		
XPADJMOD	Bool	"T" if appropriate CALDB spurious modulation map was applied by ixpeadjmod; "F" otherwise		

 Table 6-3: Levels-2 Science Event data Primary Header keywords

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 26 of 79

XPPEDMAP	Bool	"T" if appropriate CALDB pedestal map was applied; "F" otherwise
XPPEQMAP	Bool	"T" if appropriate CALDB pixel equalization map was applied; "F" otherwise
XPPKGAIN	Bool	"T" if appropriate CALDB peak gain map was applied; "F" otherwise
XPSTOKES	Bool	"T" if optimum Stokes parameters were calculated; "F" otherwise
XPTGAIN	Bool	"T" if temperature gain correction applied; "F" otherwise
XPWEIGHT	Bool	"T" if event-by-event weights were calculated; "F" otherwise
XPASPCOR	Bool	"T" if x-ray aspect correction as applied; "F" otherwise

6.3.2 EVENTS extension header

The Level-2 Science Event data EVENTS extension header describes parameters of the recorded observation itself, including time data that are largely repeated from the primary header. It also includes the operational parameters of the DU in use during the observation.

The following table defines the keywords and data types of the data in the EVENTS header extension. All the keywords listed in Sections 4.5.1, 4.5.2, and 4.5.4 are included, as well as the keywords defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Variable name	Туре	Description	
ACOLCORR	D	Coherent noise offset	
ATRGCORR	D	Trigger mini-cluster offset	
D_MAX	D	External radius of the horseshoe search region	
D_MIN	D	Internal radius of the horseshoe search region	
HDUCLASS	А	HDU class. Must be set to "OGIP" (Level 2)	
HDUCLAS1	А	Secondary HDU Class. Must be set to "EVENTS" (Level 2	2)
RA_OBJ	E	Right Ascension of object. (deg)	
DEC_OBJ	E	Declination of object. (deg)	
EQUINOX	D	Equinox of celestial coordinate system	2000.0
RADECSYS	А	Celestial coordinate system	'ICRS'
MAXROISI	Ι	The maximum ROI size in pixels (smaller windows will be	discarded)
MINDNSPT	Ι	Minimum density points for the DBSCAN clustering	
MINROISI	Ι	The minimum ROI size in pixels (smaller windows will be	discarded)
MINDNSPT	Ι	Minimum density points for the DBSCAN clustering	
MOM1_THR	D	Threshold for initial moment analysis	
MOM2_THR	D	Threshold for secondary moment analysis	
NUM_PED	Ι	Number of events acquired for pedestal subtraction	
OBSID	А	Observation ID (Level 1 only)	
ONTIME	E	Engineering-defined exposure time (sec) minus any gaps in	event data.
POLCCONV	А	Polarization coordinate convention. Must be set to "IAU" (Level 2)
REC_THR	Ι	Zero-suppression threshold for the track reconstruction	
REC_VER	Ι	Version of the GPD software used to generate the file.	
S_VBOT	E	GEM bottom HV setting for this DU (volts)	
S_VTOP	E	GEM top HV setting for this DU (volts)	
S_DRIFT	E	Drift HV setting for this DU (volts)	

Table 6-4: Level-2 Science Events data EVENTS header description

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 27 of 79

W_SCALE	D	Scale factor for the exponential weights used during analysis.	
XPNOIMAP	В	"T" or True to indicate that noise map CALDB was applied to the events in this file	
XPPEDMAP	В	"T" or True to indicate that pedestal map CALDB was applied to the events in this file	
XPPEQMAP	В	"T" or True to indicate that pixel equalization CALDB was applied to events in this file	
XPPKGAIN	В	"T" or True to indicate that peak gain correction CALDB was applied to events in this file	
XPADJMOD	В	"T" or True indicate that ixpeadjmod has already subtracted the spurious modulation, and is a flag to ixpeadjmod not to process this file	
XPWEIGHT	В	"T" or True to indicate that event-by-event weights were calculated.	
XPASPCOR	В	"T" or True to indicate that ixpedet2j2000 corrected the events for sky projection and spacecraft attitude	
XPTGAIN	В	"T" or True to indicate that ixpegaincorrtemp corrected the gain for temperature effects	
XPSTOKES	В	"T" or True to indicate that ixpecalcstokes was run to pick the weighted optimum set of Stokes parameters	
TCTYPE8	А	"RATAN" indicates that the X column is in tangent plane coordinates and the axis is parallel to Right Ascension.	
TCRPX8	J	299	
TCRVL8	D	9.778451208224594	
TCDLT8	E	-0.00072222	
ТСТҮРЕ9	А	"DEC—TAN" indicates that the Y column is in tangent plane coordinates and the axis is parallel to Declination	
TCRPX9	J	299	
TCRVL9	D	9.778451208224594	
TCDLT9	E	-0.00072222	

6.3.3 EVENTS extension binary table

Table 6-5 defines the column names and data types of the data in the EVENTS binary table extension. All keywords listed in the table are mandatory. The data type codes used in the "Type" column are defined in Appendix B.

Column Name	Туре	Description
TRG_ID	J	Trigger identifier. The use of trigger ID, instead of event ID, is to emphasize that the DAQ can discard triggers based on ROI size
TIME	D	Sum of SEC and MICROSEC
STATUS	16X	16-bits of processing status/error flags
PI	1J	Pixel-equalization and gain-corrected event signal
W_MOM	Е	Statistical weight of this event (from Moments Analysis)
Q	D	Value of Stokes parameter q in J2000 tangent plane axis
U	D	Value of Stokes parameter u in J2000 tangent plane axis
Х	Е	Calculated position, projected onto the J2000 tangent plane axis parallel to celestial equator using the preliminary aspect correction
Y	E	Calculated position, projected onto the J2000 tangent plane axis perpendicular to celestial equator using the preliminary aspect correction
STATUS2	16X	16-bits of processing status/error flags (see Table 5-6)

Table 6-5: Level-2 Event data EVENTS binary table description

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 28 of 79

6.3.4 GTI extension header

The Level-2 Science Event data file GTI extension header describes the overall time boundaries of the data within the file, and the means by which time is measured. The header keywords are defined in Section 4.5.7, and additional keywords are defined in the following table.

For Level-2 data, DEADC and LIVETIME cannot reliably be calculated directly from the Level 2 events. This is because some Level-2 events are removed from the event list based on criteria other than when the events occurred. That means that between any two consecutive Level-2 events some detector-recorded events may be missing and LIVETIME information may have been lost. Therefore, the DEADC and LIVETIME for the Level-2 data are calculated by applying the Level-2 GTI to the Level-1 event lists, and then calculating the LIVETIME by summing all the events within the GTI.

Keyword Name	Туре	Description
DEADC	D	Ratio of LIVETIME/ONTIME values
HDUCLASS	А	HDU class. Must be set to "OGIP" (Level 2)
HDUCLAS1	А	Secondary HDU Class. Must be set to "GIT" (Level 2)
LIVETIME	D	Sum of LIVETIME column for all unfiltered events (i.e., Level 1) within the valid GTI (i.e., Level 2) of the file, converted to seconds (Seconds)
ONTIME	D	Engineering-defined exposure time, minus any intervals of science data not received on the ground (seconds)
OBS_MODE	А	DSU Observation mode (usually = 'OBSERVATION')

Table 6-6: GTI header keyword description

6.3.5 GTI extension binary table

The Level-2 Science Event data GTI extension binary table rows give the start and stop (in IXPE time seconds) of a single "Good Time Interval" contained within the time bounds of the overall file. The entire table defines all the time intervals in the file in which the IXPE mirror/detector field of view contained the target, the Filter Wheel Assembly was in the nominal observing position, and the DU detector in question was operating in the nominal observing mode.

7 Level-1 Engineering data format

7.1 Description

The Level-1 engineering data files are created by the SOC from the Level-0 Engineering data files. Most Level-1 engineering files (denoted as "type A") are derived from files which contain information from several subsystems and a single packet ID, are combined into FITS format files also separated and named by the subsystem and the packet ID.

However, two types of Level-1 engineering files (denoted as "type B") are further processed to gather selections of engineering data of specific area of scientific interest and secondary calculations based on that data. These are the Attitude files and the Orbital files.

The most important change to the overall structure of the Level-1 engineering data and files from Level 0 is that data gaps and data overlaps due to missed data and retransmitted data have been removed, such that all overlaps are resolved in favor of the latest data received. In addition, the Level-1 data and files are ordered by the time in which the data were recorded by the spacecraft

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 29 of 79

or detector, and this time has been converted to Terrestrial Time, which is offset from the raw Level-0 timestamps by a constant.

7.2 File naming convention

The Level-1 engineering data filenames of type A are of the form

ixpePPnnnnpp_inst_engtypeA_aaaa_vxx.fits

for files of type B, the filename convention is

ixpePPnnnnpp_inst_engtypeB_vxx.fits

The variable parts of the name are indicated by *italics*. The description, references, and range or list of valid values are given in the table below.

Variable	Description	Range or Values	
PPnnnnpp	The IXPE observation Sequence Number		
inst	ID of the instrument which produced the data	= det1-3 for data specific to a single DU	
		= all for all other data	
engtypeA	Type A engineering data	adc – ADCS data	
		tmp – Thermal data	
		pay – Payload data	
engtypeB	Type B engineering data	att – Attitude solution data (uses det1, 2, etc.)	
		orb – GPS orbital position data	
		gti – Level-2 Good Time Intervals	
aaaa	Packet ID of packet from which type A data were derived	4 Digit ID of packet (see Table 7-12). Data derived from multiple APIDs are given an APID value of "9999"	
xx	Two-digit version number	01 - 99	

Table 7-1: Level-1 Engineering data naming variable description

7.3 Header Data Unit structure

7.3.1 Header Data Unit structure of General Engineering Data Files

Level-1 Engineering General Engineering Data FITS files contain a primary HDU, one binary table HDU with the name "HK" to hold the HK data for the given sub-type and APID in that file, and one binary table HDU to hold the GTI data. The seven sub-types are based on the seven Ball-defined subsystems, consisting of the Attitude Determination and Control Subsystem (ADCS), Power, Command and Data Handling (CDH), Thermal, Payload, Communications, and FSW files.

The following table gives the types of payload data to be found in each packet APID. The first column lists the APID, and the next seven ??? columns indicate which subystems contribute data to that APID. An 'X' in a given APID row indicates that the subystem indicated in the given column contributes data to that APID. A '-' indicates in a given APID row indicates that the subsystem for that column does not contribute data to the APID. Note that all APID's above 1000 are for the Payload only, and for the DSU and DU's specifically.

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 30 of 79

APID	Subsystems with data in given APID						
	Adc	Pwr	Cdh	Ттр	Pay	Com	Fsw
0031	-	-	X	-	-	-	-
0100	X	X	X	-	_	X	Х
0110	X	-	-	-	_	-	Х
0120	X	Х	-	X	Х	-	Х
0130	Х	Х	Х	X	Х	Х	X
0140	-	-	-	-	-	X	X
0150	-	-	Х	-	-	Х	X
0160	-	-	-	-	-	-	X
0170	-	-	-	-	X	-	X
0200	-	-	-	-	-	-	X
0201	-	-	-	-	-	-	X
1118- 1120	-	-	-	-	Х	-	-
1200- 1203	-	-	-	-	Х	-	-
1210- 1215	-	-	-	-	Х	-	-
1220- 1221	-	-	-	-	Х	-	-
1230- 1236	-	-	-	-	Х	-	-
1260- 1263	-	-	-	-	Х	-	-
1270	-	-	-	-	X	-	-
1280	-	-	-	-	Х	-	-
1300	-	-	-	-	Х	-	-
1321- 1326	-	-	-	-	Х	-	-
1400- 1406	-	-	-	-	Х	-	-
1450- 1451	-	-	-	-	X	-	-
GTI	X	X	X	X	X	X	X

Table 7-2: Packet APID's and the	e subsystem data contained in them

7.3.2 Header Data Unit structure of Special Interest Engineering Data Files

The Level-1 Special Interest Engineering Data files are FITS files containing a primary header and two binary table extensions of data culled from the General Engineering data file and

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 31 of 79

extended with additional data calculated for scientific use. The second extension is a FITS binary table extension containing the time-ordered data for the entire Observation Segment. The third extension is a FITS binary table extension containing the start and stop times of all intervals of continuous engineering data (i.e., with no missing packets or duplications that indicate missed data). The structure of these file consists of the following FITS sections:

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	HK	HK data for the given type.
	GPS_TPV	GPS-derived orbital position data (for "orb" files).
Extension 2	GTI	Binary table of start and stop times for each interval of continuous (no time gaps in engineering) data.

Table 7-3: Level-1 Special Interest Engineering Data Format

7.3.3 Primary Header format

The following table lists keywords used in the primary header of the General Engineering Data file. Note, this header contains all the standard keywords defined in Sections 4.5.1 and 4.5.2. All the keywords listed in this table and reference tables are mandatory. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value, Range or Standard
OBS_ID	J	Observation ID (Only in Level 1 and 2)	PPnnnnpp
TLM2FITS	А	Software version number in the form AA.BB, where AA is the major version and BB is the minor version.	
TXYDZN	Е	Nominal offset of target from center of detector (pixels)	Derived from ADPOINTFF quaternion
PADYN	Е	Position angle of the y-axis (radians)	Derived from ADPOINTFF quaternion

Table 7-4: Level-1 General Engineering data Primary Header keywords

7.3.4 Secondary header (non GTI) format

All Level-1 Engineering non-GTI secondary headers are binary table extensions. The first column of the extension is always "TIME", which is seconds since the IXPE epoch time of the (Consultative Committee for Space Data Systems) CCSDS Space Packet timestamp of the packet in which the data arrived, except for the Attitude files, in which "TIME" is seconds since the IXPE epoch time of the specific time stamp of the Star Tracker fix. For the General Engineering files, the rest of the column names and descriptions are found in the Command and Telemetry Database (CTDB) produced by Ball Aerospace. Special-interest engineering data formats are described in the following subsections. Keywords of the secondary headers are defined in Sections 4.5.1, and 4.5.2.

7.3.4.1 Attitude data format

The first FITS extension of a spacecraft attitude file consists of a binary table HDU with selected Star Tracker telemetry values and additional columns for quaternions that transform spacecraft coordinates to Earth-Centered Inertial (ECI) or J2000 coordinates. The columns are described below. All quaternions are in scalar-last format.

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 32 of 79	

Column Name	Туре	Description
TIME	D	Seconds since IXPE epoch time for this specific Star Tracker fix (from Level-A data)
QSJ_ST1	4E	Quaternion to transform from spacecraft coordinates to J2000 coordinates (or ECI) based on the Star Tracker Optical Head 1 quaternion (Quaternion format is scalar-last)
QSJ_ST2	4E	Quaternion to transform from spacecraft coordinates to J2000 coordinates (or ECI) based on the Star Tracker Optical Head 2 quaternion (Quaternion format is scalar-last)
ST1RAWQ	4E	Raw quaternion to transform Star Tracker Optical Head 1 coordinates to J2000 (or ECI) (Copied from Level-A file)
ST2RAWQ	4E	Raw quaternion to transform Star Tracker Optical Head 2 coordinates to J2000 (or ECI) (Copied from Level-A file)
OBS_SEG_Q	4E	Desired quaternion for the give observation segments
STANGVELX	E	Angular velocity about the ECEF X axis
STANGVELY	E	Angular velocity about the ECEF Y axis
STANGVELZ	E	Angular velocity about the ECEF Z axis
QDJ	4E	Calculated rotation quaternion from DU to J2000 frame
PADY	E	Calculated J2000 position angle of transformed DU Y-axis
TXYDZ	2E	Calculated J2000 tangent plan X, Y coordinates of DU Z-axis (i.e., DU center)

Table 7-5: Attitude dat	a column names	and formats
-------------------------	----------------	-------------

7.3.4.2 Orbital position data format

The first FITS extension of an orbital position file contains a binary table HDU with selected GPS telemetry values, and additional columns of calculated values. These calculated values have transformed the default GPS positions—Earth-Centered, Earth-Fixed (ECEF) coordinates—into Latitude, Longitude and Altitude (LLA), and the positions and velocities into Earth-Centered Inertial (ECI) coordinates.

Column Name	Туре	Description
TIME	D	Seconds since IXPE epoch time (from CCSDS Space Packet timestamp)
ADGPSDST	Ι	GPS status copied from Level-A file
ADGPSGDOP	Ι	GPS degree of precision (data quality index)
ADGPSWEEK	J	GPS week number (weeks since 6/1/1980) extended beyond 16 bits to allow for rollovers since epoch
ADGPSECONDS	D	GPS seconds since the last GPS week.
ADGPSECEFX	D	X-coordinate of GPS position in ECEF meters (copied from Level-A file)
ADGPSECEFY	D	Y-coordinate of GPS position in ECEF meters (copied from Level-A file)
ADGPSECEFZ	D	Z-coordinate of GPS position in ECEF meters (copied from Level-A file)
ADGPSECIX	D	X-coordinate of GPS position in ECI meters (calculated)
ADGPSECIY	D	Y-coordinate of GPS position in ECI meters (calculated)
ADGPSECIZ	D	Z-coordinate of GPS position in ECI meters (calculated)
ADGPSLON	D	Longitude of GPS position in LLA degrees (calculated)
ADGPSLON	D	Latitude of GPS position in LLA degrees (calculated)
ADGPSLON	D	Altitude of GPS position in LLA meters (calculated)
ADGPSECEFVELX	D	X-coordinate of GPS velocity in ECEF meters/sec (copied from Level-A file)
ADGPSECEFVELY	D	Y-coordinate of GPS velocity in ECEF meters/sec (copied from Level-A file)
ADGPSECEFVELZ	D	Z-coordinate of GPS velocity in ECEF meters/sec (copied from Level-A file)
ADGPSECIVELX	D	X-coordinate of GPS velocity in ECI meters/sec (calculated)
ADGPSECIVELY	D	Y-coordinate of GPS velocity in ECI meters/sec (calculated)

 Table 7-6: Level-1 Orbital position columns

IXPE Science Operations Center			
Title: User Guide — Data FormatsDocument No.: IXPE-SOC-DOC-007Revision: D		Revision: D	
	Effective Date: 2022-07-22	Page: 33 of 79	

ADGPSECIVELZ D Z-coordinate of GPS velocity in ECI meters/sec (calculated)

7.4 Level-2 GTI data format

7.4.1 Description

All science event data files except Level-2 science event data files contain event data from any time during which the given detector was producing data. This includes during calibrations, occultations, slews, and any other occasions during which the spacecraft may have not been viewing the target designated in the Observation Segment parameters. The GTI for these event files covers all portions of these intervals during which event data was received at the SOC.

Level-2 science event files, however, only contain data from the intervals during which we expect data from the target source to be dominant. Thus, the Level-2 science event GTI includes intervals in which the detectors and the DSU were properly configured and the star tracker was actively tracking the source in the instrument field of view, but does not include intervals of calibration, occultation, or slew. The Level-2 GTI for each detector covers all portions of these intervals during which event data for that detector was received at the SOC. Level-2 GTI data for each detector are provided as a Level-1 Engineering file, so that users may apply these intervals to the Level-1 science event files.

7.4.2 File naming convention.

Level-2 GTI data file names are of the form

ixpePPnnnnpp_detD_gti_vxx[_cii].fits

Variable parts of the name are indicated by *italics*. Optional parts of the name are included in square brackets [], and only appear in the filename when necessary. The description, references, and range or list of valid values are given in the table below.

Variable	Description	Range or Values
PPnnnnpp	The IXPE observation Sequence Number	
D	Project designated identification number of DU	1, 2, or 3 (in flight)
xx	Two-digit file version number	01 – 99
ii	Two-digit optional component file index for observation segment datasets that are so large they must be divided into smaller pieces	01 – 99 (if present)

Table 7-7: Level-2 GTI data file naming variable description

7.4.3 Format

The Level-2 GTI data file format is a FITS file with the following FITS sections.

Table 7-8: Level-2 GTI Data file format

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 2	GTI	Binary table of start and stop times for each interval of Level-2 time, as described above

The format of the primary header is described in Sections 4.4.1 and 4.4.2. The format of the GTI extension is described in Sections 4.4.7 and 4.4.8.

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 34 of 79

7.5 Level-1 Exposure Map

7.5.1 Description

The Level-1 Exposure Map is a FITS file that maps onto the sky the effective exposure time for each pixel in the tangent-plane projection of the field of view of the target object. It is also possible to generate an Exposure Map from a Level-1 Attitude Solution file.

7.5.2 File naming convention

The Level-1 Exposure Map data file names are of the form

ixpePPnnnnpp_detD_expmap_vv.fits

The variable parts of the name are indicated by *italics*. The description, references, and range or list of valid values are given in the table below.

Variable	Description	Range or Values
PPnnnnpp	The IXPE observation Sequence Number	
D	Project designated identification number of DU	1, 2, or 3 (in flight)
vv	Two-digit version number	01 - 99

Table 7-9: Level-1 Exposure Map data naming variable description

7.5.3 Format

The Level-1 Exposure Map data format includes the Primary section/header which contains an image—namely a 1024x1024 image with 32 bits per pixel. The structure of the file consists of the following FITS sections.

Table 7-10: FITS structure of Level-1 Exposure Map data

Section/Header	Name	Description
Primary	EXPMAP	FITS-required primary header

7.5.3.1 Primary Header

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5, in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range/Example
DET_ID	А	Name of physical ID of the detector which corresponds to given DETNAM. Note: Both "DETNAM" and "DET_ID" in an input file must match the same-name values in the CALDB files in order to process the data.	"DU_FM1", e.g.
ORIGIN	А	Location where the FITS file was created	("IAPS", "INFN", "MSFC")
CREATOR	А	Software that produced the file	'ixpecalibconverter', e.g.
CREAT_ID	A	Unique ID of the creator (retained for compatibility with I2T products)	
OBS_ID	J	Observation ID (Only in Level 1 and 2)	

 Table 7-11: Level-1 Exposure Map data Primary Header keywords

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 35 of 79	

TIMEREF	А	Time Reference	'LOCAL'
XMAP_VER	Ι	Version of the exposure map file format	1
ONTIME	D	On-source time	Any
LIVETIME	D	On-source time corrected for deadtime	Any
EXPOSURE	D	Exposure time	Any
DTCORR	D	Dead time correction	Any
EXTNAME	А	Name of the binary extension	'EXPMAP'
FCW_POS	В	Position of the Filter and Calibration Wheel	0-6
FCW_CMD	Ι	Commanded value of encoder of Filter and Calibration Wheel	
FCW_ENC	Ι	Readout value of encoder of Filter and Calibration Wheel position	
EQUINOX	D	Equinox of celestial coordinate system	2000.0
RADECSYS	А	Celestial coordinate system	'ICRS'
BITPIX	Ι	Number of bits per pixel	-32
NAXIS	Ι	Number of axes (2)	2
NAXIS1	Ι	Length of data axis 1 (1024)	1024
NAXIS2	Ι	Length of data axis 2 (1024)	1024
BUNIT	А	Unites of image array values.	
CTYPE1	А	Horizontal axis coordinate type (tangent plane parallel to RA)	RATAN
CRPIX1	E	Array location of the horizontal reference point in pixels	300
CRVAL1	E	Array value at horizontal reference point (target center RA)	0-360.
CRDELT1	Е	Coordinate increment on horizontal axis (image scale in deg/pixel)	
CROTA1	E	Rotation of horizontal axis at reference point	0.
CUNIT1	E	Units of CDELT1 and CRVAL1	Deg
CTYPE2	А	Vertical axis coordinate type (tangent plane parallel to Declination).	DECTAN
CRPIX2	Е	Array location of the vertical reference point in pixels	300
CRVAL2	Е	Array value at vertical reference point (target center Dec)	-90 - +90
CRDELT2	E	Coordinate increment on vertical axis (image scale in deg/pixel)	
CROTA2	Е	Rotation of axis at reference point	0.
CUNIT2	Е	Units of CDELT1 and CRVAL1	Deg

8 Science Processing CALDB data

8.1 Basic Telescope Data CALDB file

8.1.1 Description

The basic telescope data CALDB is a collection of basic data for each DU/MMA pair. It includes the DU dead time parameter, the mirror nominal focal length, and other simple data parameters necessary for understanding the instrument and processing the science data.

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 36 of 79

8.1.2 Format

The format of the basic telescope data CALDB files is a standard CALDB FITS file, with a primary header only, in which telescope parameters are defined with keywords and values. The table below lists the HDU section; the following section describes the primary HDU and the values defined within it.

Section/Header	Name	Description		
Primary	-	FITS-required primary header that defines basic telescope parameters		

Table 8-1: FITS structure of Basic Telescope Data CALDB file

8.1.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5, in addition to those defined in the following table. Data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Name of the instrument (which is everything)	'ALL'
FILENAME	А	Name of this file	'ixpe_a0_190905_teldef_01.fits', e.g.
CONTENT	А	Description of contents	'TELESCOPE DEFINITION FILE'
CCLS0001	А	Type of dataset: Basic Calibration File (BCF), or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'TELDEF'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'TELESCOPE DEFINITION FILE'
NCOORDS	Ι	Number of coordinates defined in this file	'3'
COORD0	А	First coordinate system (RAWX, RAWY)	'RAW'
COORD1	А	Second coordinate system (DETX, DETY)	'DET'
COORD2	А	Third coordinate system (X, Y)	'SKY'
RAW_XSIZ	Ι	Raw address space X size (pixels)	300
RAWXPIX1	E	Raw address space X first pixel number (pixel)	0
RAW_XSCL	E	Raw X scale (mm/pixel)	0.05
RAW_XCOL	А	Name of raw X column in event files	'CHIPX'
RAW_YSIZ	Ι	Raw address space Y size (pixels)	352
RAWYPIX1	E	Raw address space Y first pixel number (pixel)	0
RAW_YSCL	E	Raw Y scale (mm/pixel)	0.0426
RAW_YCOL	А	Name of raw Y column in event files	'CHIPY'
RAW_UNIT	А	Physical unit of RAW coordinates	'mm'
DET_XSIZ	Ι	DET address space X size (pixels)	300
DETXPIX1	E	DET address space X first pixel number (pixel)	0
DET_XSCL	E	DET PX scale (mm/pixel)	0.05
DET_XCOL	А	Name of DET PX column in event files	'DETX'

Table 8-2: Basic Telescope Data CALDB Primary Header keywords
	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 37 of 79

DET_YSIZ	Ι	DET address space Y size (pixels)	300
DETYPIX1	E	DET address space Y first pixel number (pixel)	0
DET_YSCL	E	DET Y scale (mm/pixel)	0.05
DET_YCOL	А	Name of DET Y column in event files	'DETY'
DET_UNIT	А	Physical units of DET coordinates	'mm'
SKY_XSIZ	Ι	SKY address space X size (pixels)	600
SKYXPIX1	E	SKY address space X first pixel number (pixel)	0
SKY_XSCL	E	SKY X scale (deg/pixel)	7.2222E-04
SKY_XCOL	А	Name of SKY X column in event files	'X'
SKY_YSIZ	Ι	SKY address space Y size (pixels)	600
SKYYPIX1	E	SKY address space Y first pixel number (pixel)	0
SKY_YSCL	E	SKY Y scale (deg/pixel)	7.2222E-04
SKY_YCOL	А	Name of SKY Y column in event files	·Y'
SKY_UNIT	А	Physical units of SKY coordinates	'deg'
SKY_FROM	А	Indicates coordinates from which SKY coordinates are calculated	'DET'
COE_X1_A	E	Offset coefficient translating DU1 DETX to DET_PX	7.5
COE_X1_B	E	Linear coefficient translating DU1 DETX to DET PY	1.0/0.05
COE_X1_C	E	Linear coefficient translating DU1 DETX to DET PY	0
COE_Y1_A	E	Offset coefficient translating DU1 DETY to DET_PY	7.5
COE_Y1_B	Е	Linear coefficient translating DU1 DETY to DET PY	1.0/0.05
COE_Y1_C	Е	Linear coefficient translating DU1 DETY to DET PY	0
COE_X2_A	Е	Offset coefficient translating DU2 DETX to DET_PX	7.5
COE_X2_B	Е	Linear coefficient translating DU2 DETX to DET PX	1.0/0.05
COE_X2_C	Е	Linear coefficient translating DU2 DETX to DET PX	0
COE_Y2_A	Е	Offset coefficient translating DU2 DETY to DET_PY	7.5
COE_Y2_B	Е	Linear coefficient translating DU2 DETY to DET_PY	1.0/0.05
COE_Y2_C	Е	Linear coefficient translating DU2 DETY to DET PY	0
COE_X3_A	Е	Offset coefficient translating DU3 DETX to DET_PX	7.5
COE_X3_B	Е	Linear coefficient translating DU3 DETX to DET PX	1.0/0.05
COE_X3_C	Е	Linear coefficient translating DU3 DETX to DET PX	0
COE_Y3_A	Е	Offset coefficient translating DU3 DETY to DET_PY	7.5
COE_Y3_B	Е	Linear coefficient translating DU3 DETY to DET PY	1.0/0.05
COE_Y3_C	Е	Linear coefficient translating DU3 DETY to DET PY	0
DET_XOFF	Е	X offset between intermediate and DET coordinates	0.0, e.g.
DET_YOFF	Е	Y offset between intermediate and DET coordinates	0.0, e.g.
DETXFLIP	Ι	Signed to indicate x-axis flips in RAW->DET	1 or -1
DETYFLIP	Ι	Signed to indicate y-axis flips in RAW->DET	1 or -1
DET_SCAL	Е	Scaling between RAW and DET	Any number
DET_ROTD	E	Rotation (degrees)	Any number
ROLLSIGN	Е	Sign of roll positive direction about boresight	1.0 or -1.0
ROLLOFF	Е	Offset of roll angle in degrees	-180 +180.0
FOCALLEN	E	Focal length of optics (mm)	4001.0, e.g.
OPTAXISX	Ι	Optical axis X in DET_PX coordinates (pixel)	150
OPTAXISY	Ι	Optical axis Y in DET_PX coordinates (pixel)	150
D_NAMID1	А	Defines the valid value of "DET_ID" corresponding to DETNAM = "DU1"	"DU_FM2"

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 38 of 79	

D_NAMID2	А	Defines the valid value of "DET_ID" corresponding to DETNAM = "DU2"	"DU_FM3"
D_NAMID3	А	Defines the valid value of "DET_ID" corresponding to DETNAM = "DU3"	"DU_FM4"
D_NAMID4	А	Defines the valid value of "DET_ID" corresponding to DETNAM = "DU4"	"DU_FM1"

8.2 Detector Unit (DU) Pixel equalization CALDB file

8.2.1 Description

The Detector Unit Pixel Equalization CALDB is a pixel-by-pixel map of the relative gain of the Detector Unit. It is used to correct each pixel of a Level-1 event image for gain variations across the detector before the event image is analyzed. The DU gain map CALDB's is produced for the three flight detectors and the one flight spare by the I2C and delivered electronically to the SOC.

8.2.2 Format

The format of the gain map files is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the gain map. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

		-
Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	PIXGAIN	Gain map binary table data

 Table 8-3: FITS structure of DU Gain Map CALDB file

8.2.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5, in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	А	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground
DET_ID	А	See Section 4.5.3	

Table 8-4: Gain Map CALDB Primary Header keywords

8.2.2.2 PIXGAIN Extension: Header

The following table lists keywords used in the Gain Table (PIXGAIN) header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All header keywords from the Primary Header are repeated in the Gain Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'PIXGAIN'
FILENAME	А	Name of CALDB file	'ixpe_d1_200523_gain_01.fits', e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE Gain'

 Table 8-5: PIXGAIN Extension Header keywords

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 39 of 79	

CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'GAIN'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'IXPE Gain coefficients'

8.2.2.3 PIXGAIN Extension: Table Columns

The table itself is a list of the gain calibration times, raw detector positions, temperatures, slopes, and offsets. Data are supplied for each pixel, and therefore occupy 5 columns by 105,600 rows. The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
CHIPX	Ι	Pixels	Raw x-pixel ID
CHIPY	Ι	Pixels	Raw y-pixel ID
EQ_SLOPE	D	PI/PHA	Gain slope coefficient

Table	8-6:	Gain	Table	Columns
Laore	0.0.	Oum		Containing

8.3 Detector Unit (DU) Noise Map CALDB file

8.3.1 Description

The Detector Noise Map CALDB is a pixel-by-pixel map of the noise coefficients of the Detector Unit. It is used to suppress false triggers due to noisy pixels. The DU noise map CALDB's will be produced for the three flight detectors and the one flight spare by the I2C and delivered electronically to the SOC.

8.3.2 Format

The format of the noise map files is a standard CALDB fits file, with a primary header and a single extension for the binary table that holds the noise map. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

 Table 8-7: FITS structure of DU Noise Map CALDB file

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	PIXNOISE	Noise map binary table data

8.3.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	А	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground

Table 8-8: Noise Map CALDB Primary Header keywords

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 40 of 79		

DET_ID	А	See Section 4.5.3	

8.3.2.2 PIXNOISE Extension: Header

The following table lists keywords used in the Noise Table (PIXNOISE) header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All header keywords from the Primary Header are repeated in the Noise Table Header and will not be repeated in the table below.

Keyword Name	Type	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'PIXNOISE'
FILENAME	А	Name of CALDB file	'ixpe_d1_200523_noise_01.fits', e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE Noise'
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'NOISE'
CVSD0001	А	Date when this file should first be used (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'IXPE Noise coefficients'

Table 8-9: PIXNOISE Extension Header keywords

8.3.2.3 PIXNOISE Extension: Table Columns

The table itself is a list of the noise calibration times, raw detector positions, temperatures, slopes, and offsets. Data are supplied for each pixel, and therefore occupy 4 columns by 105,600 rows. The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
CHIPX	Ι	Pixels	Raw x-pixel ID
CHIPY	Ι	Pixels	Raw y-pixel ID
NOISE	D	N/A	Noise coefficient
TIME	D	Sec	Time (IXPE time)

 Table 8-10: PIXENOISE Extension Table Columns

8.4 Detector Unit (DU) Pedestal Map CALDB file

8.4.1 Description

The Detector Pedestal Map CALDB is a pixel-by-pixel map of the pedestal coefficients of the Detector Unit. It is used when post-event pedestal measurements are not taken and subtracted by the DSU, to subtract a noise pedestal from each pixel. The DU pedestal map CALDB's will be produced for the three flight detectors and the one flight spare by the I2C and delivered electronically to the SOC.

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 41 of 79

8.4.2 Format

The format of the pedestal map files is a standard CALDB fits file, with a primary header and a single extension for the binary table that holds the pedestal map. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Section/Header	Name	Description		
Primary	-	FITS-required primary header		
Extension 1	PIXPEDS	Pedestal map binary table data		

Table 8-11: FITS structure of DU Pedestal Map CA	LDB file
--	----------

8.4.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	A	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground
DET_ID	А	See Section 4.5.3	

Table 8-12: Pedestal Mar	CALDB Primarv	Header keywords
Tuble o 12. I cuestal ma		ficuaci neg noras

8.4.2.2 PIXPEDS Extension: Header

The following table lists keywords used in the Pedestal Table (PIXPEDS) header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All header keywords from the Primary Header are repeated in the Pedestal Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'PIXPEDS'
FILENAME	А	Name of CALDB file	'ixpe_d1_200523_pedestal_01.fits',
			e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE Pedestal'
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or	'BCF'
		Calibration Product File (CPF)	
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'PEDESTAL'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used	'00:00:00', eg.
		(TT, goes with date above)	
CDES0001	Α	Description of the contents of this file	'IXPE Pedestal coefficients'

Table 8-13: PIXPEDS Extension Header keywords

8.4.2.3 PIXPEDS Extension: Table Columns

The table itself is a list of the pedestal calibration times, raw detector positions, temperatures, slopes, and offsets. Data are supplied for each pixel, and therefore occupy 4 columns by 105,600

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 42 of 79		

rows. The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
CHIPX	Ι	Pixels	Raw x-pixel ID.
CHIPY	Ι	Pixels	Raw y-pixel ID.
PEDESTAL	D	N/A	Pedestal coefficient
TIME	D	Sec	Time (IXPE time)

Table 8-14: PIXPEDS Extension Table Columns

8.5 Detector Unit (DU) Bad-Pixel Map CALDB file

8.5.1 Description

The Detector Unit bad pixel map CALDB is a list of the positions of the pixels in a given DU that, for reasons of extreme gain variation, flickering response, or other defect, are not useable for science. It is used in the calculation of the exposure map and in the analysis of the Level-1 data. If bad pixels are identified during ground calibration, the bad pixel map CALDB files for the three flight detectors and the flight spare will be produced by the I2C and delivered electronically to the SOC. If no bad pixels are identified during ground calibration, the SOC will produce initially empty bad-pixel maps for incorporating flight and user additions, as necessary.

8.5.2 Format

The format of the bad-pixel files is a standard CALDB fits file, with a primary header and a single extension for the binary table that holds the bad pixel data. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	BADPIX	Bad pixel binary table data

 Table 8-15: FITS structure of Bad pixel Map CALDB file

8.5.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	А	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground
DET_ID	A	See Section 4.5.3	

 Table 8-16: Bad Pixel CALDB Primary Header keywords

8.5.2.2 BADPIX Extension: Header

The following table lists keywords used in the Bad Pixel Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the

IXPE Science Operations Center				
Title: User Guide — Data FormatsDocument No.: IXPE-SOC-DOC-007Revision: D				
	Effective Date: 2022-07-22	Page: 43 of 79		

header keywords from the Primary Header are repeated in the Bad Pixel Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'BADPIX'
FILENAME	А	Name of CALDB file	'ixpe_d1_200523_badpix_01.fits', e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE Ground Bad Pixel Table'
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'BADPIX'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	A	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'IXPE Ground Bad Pixel Table'

 Table 8-17: BADPIX Extension Header keywords

8.5.2.3 BADPIX Extension: Table Columns

The table itself is a list of the bad calibration times, raw detector positions, and bad pixel flag bits. Data are supplied only for bad pixels, and therefore occupy 4 columns by a number of rows that may be zero and may be different for each detector unit. The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

Table 8-18: BADPIX	Extension	a Table Columns	
--------------------	-----------	-----------------	--

Name	Туре	Units	Description
DET_PX	Ι	Bins	Detector x-position bin $(0-300 = -7.475 \text{ to } +7.475 \text{ mm})$
DET_PY	Ι	Bins	Detector x-position bin $(0-300 = -7.475 \text{ to } +7.475 \text{ mm})$
BADFLAG	16X	bits	Bit-wise flags 0x0001 = Left edge excluded 0x0002 = Right edge excluded 0x0004 = Top edge excluded 0x0008 = Bottom edge excluded 0x0010 = Left edge conditional (gray) 0x0020 = Right edge conditional (gray) 0x0040 = Top edge conditional (gray) 0x0080 = Bottom edge conditional (gray) 0x0100 = Interior excluded (bad pixel) 0x0200 = Interior conditional (gray pixel)

8.6 Detector Unit (DU) Peak Gain Map CALDB file

8.6.1 Description

The Detector Peak Gain CALDB is a map of the peak gain corrections of each Detector Unit. It is used after event reconstruction to remove remaining variations in gain across a detector and among detectors. The DU Peak Gain map CALDB's will be produced for the three flight detectors and the one flight spare by the I2C and delivered electronically to the SOC.

	IXPE Science Operations Center			
Title: User Guide — Data Formats	Guide — Data Formats Document No.: IXPE-SOC-DOC-007 Revision: D			
	Effective Date: 2022-07-22	Page: 44 of 79		

8.6.2 Format

The format of the Peak Gain map files is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the noise map. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Section/Header	Name	Description		
Primary	-	FITS-required primary header		
Extension 1	PKGAIN	Peak Gain binary table data		

Table 8-19: FITS str	ucture of DU	Peak Gain Maj	o CALDB file
----------------------	--------------	---------------	--------------

8.6.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	А	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground
DET_ID	Α	See Section 4.5.3	

Table 8-20:	Peak Gain	Man CAL	DB Primarv	Header l	cevwords
1 abic 0-20.	I can Gam	map Chil		iicauci i	xcy wor us

8.6.2.2 PKGAIN Extension: Header

The following table lists keywords used in the PKGAIN header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All header keywords from the Primary Header are repeated in this header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'PKGAIN'
FILENAME	А	Name of CALDB file	'ixpe_d1_200523_pkgain_01.fits', e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE Peak Gain'
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'PKGAIN'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'IXPE Peak Gain coefficients'

Table 8-21: PKGAIN Extension Header keywords

8.6.2.3 PKGAIN Extension: Table Columns

The table itself is a list of the peak gain measurement times, detected (post-ixpeevtrecon) positions, slopes, and offsets. Data are supplied for each pixel, and therefore occupy 5 columns by 90000 rows. The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 45 of 79		

Name	Туре	Units	Description
BARX_PX	Ι	Pixels	Detector x-position bin $(0-300 = -7.475 \text{ to } +7.475 \text{ mm})$ from event barycenter
BARY_PX	Ι	Pixels	Detector y-position bin $(0-300 = -7.475 \text{ to } +7.475 \text{ mm})$ from event barycenter
SLOPE	D	PI/PH A	Slope of peak gain fit
OFFSET	D	PI	Offset of peak gain fit

Table 8-22: PKGAIN Extension Table Columns

8.7 Detector Unit (DU) GEM High Voltage Gain Correction CALDB file

8.7.1 Description

The GEM High Voltage Gain Correction CALDB is a table of values for scaling the gain of the detector from one GEM HV setting to another for each Detector Unit. It is used in association with the peak gain map and the secular gain correction to correct the gain of a detector due to changes in GEM HV setting. The GEM High Voltage Gain Correction CALDB's will be produced for the three flight detectors and the one flight spare by the I2C and delivered electronically to the SOC.

8.7.2 Format

The format of the GEM High Voltage Gain Correction files is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the noise map. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	HVGAIN	GEM High Voltage Gain Correction binary table data

 Table 8-23: FITS structure of DU GEM High Voltage Gain Correction CALDB file

8.7.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

 Table 8-24: GEM High Voltage Gain Correction CALDB Primary Header keywords

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	А	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground
DET_ID	Α	See Section 4.5.3	

8.7.2.2 HVGAIN Extension: Header

The following table lists keywords used in the HVGAIN header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in this header and will not be repeated in the table below.

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 46 of 79		

Keyword Name	Type	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'HVGAIN'
FILENAME	А	Name of CALDB file	'ixpe_d1_200523_hvgain_01.fits',
			e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE GEM HV Gain'
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'HVGAIN'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', eg.
CDES0001	А	Description of the contents of this file	'IXPE GEM HV Gain coefficients'

Table 8-25:	HVGAIN	Extension	Header	keywords
--------------------	--------	-----------	--------	----------

8.7.2.3 HVGAIN Extension: Table Columns

The table itself is a list of the GEM gain correction parameters. Data are supplied for each HV and consist of a single row for each value of HV (this will initially be a single row, and will grow with time). The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
Time	D	S	IXPE seconds
DVGEM	D	V	High voltage setting of GEM
DVGEM_NOMINAL	D	V	Nominal high voltage setting of GEM.
GAMMA	D	N/A	Exponential gain parameter for HV variation model.
VDRIFT	D	V	High voltage drift setting
VDRIFT_NOMINAL	D	V	Nominal high voltage drift setting
VBOTTOM	D	V	High voltage setting on GEM bottom
VBOTTOM_NOMINAL	D	V	Nominal high voltage setting on GEM bottom

Table 8-26: HVGAIN Extension Table Columns

8.8 Detector Unit (DU) Secular Gain Correction CALDB file

8.8.1 Description

The Secular Gain Correction CALDB is table of coefficients used to correct the pressuredependent (and thus time-dependent) gain variation of a DU. It is used after event reconstruction to remove remaining variations in gain across a detector and among detectors. The DU Secular Gain Correction CALDB is produced for the three flight detectors and the one flight spare by the I2T and delivered electronically to the SOC.

8.8.2 Format

The format of the Secular Gain Correction files is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the noise map. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 47 of 79		

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	SECVAR	Secular Gain Correction binary table data

Fable 8-27	': FITS	structure	of Secular	Gain	Correction	CALDB	file

8.8.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range			
INSTRUME	А	Instrument of the telescope	GPD			
DETNAM	A	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground 			
DET_ID	А	See Section 4.5.3				

 Table 8-28: Secular Gain Correction CALDB Primary Header keywords

8.8.2.2 SECVAR Extension: Header

The following table lists keywords used in the SECVAR header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in this header and will not be repeated in the table below.

 Table 8-29:
 SECVAR Extension Header keywords

Keyword Name	Type	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'SECVAR'
FILENAME	А	Name of CALDB file	'ixpe_d1_200523_secvar_01.fits',
			e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE Secular Gain'
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'SECVAR'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', eg.
CDES0001	Α	Description of the contents of this file	'IXPE Secular Gain coefficients'

8.8.2.3 SECVAR Extension: Table Columns

The table itself is a list of the coefficients to calculate the pressure change in a DU with time, and to scale this pressure change to a change in gain slope. Data are supplied for each pixel and therefore occupy 8 columns by 1 row. The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 48 of 79	

Name	Туре	Units	Description
P_0	Ι	Mbar	Initial pressure measured at TIME_0
TIME_0	D	sec	IXPE Time of initial P_0 measurement
DELTA_1	Ι	mbar	Magnitude of first exponential component
TAU_1	D	N/A	Decay constant of first exponential component
DELTA_2	Ι	Mbar	Magnitude of second exponential component
TAU_2	D	N/A	Decay constant of second exponential component
PSCALE	D	N/A	Exponential parameter to convert pressure changes into gain scale corrections

Table 8-30: SECVAR Extension Table Columns

8.9 Detector Unit (DU) Temperature Gain Correction CALDB file

8.9.1 Description

The Detector Temperature Gain Correction CALDB is a list of weighting coefficients for several DU temperatures that affect the gain of the DU, a reference temperature, and the slope and offset of the gain correction to apply based on the weighted sum of the temperatures relative to the reference temperature. It is used after event reconstruction to remove remaining variations in gain across a detector and among detectors. The DU Temperature Gain Correction CALDB is produced for the three flight detectors and the one flight spare by the I2C and delivered electronically to the SOC.

8.9.2 Format

The format of the Temperature Gain Correction files is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the noise map. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	TEMPGAIN	Temperature Gain Correction binary table data

 Table 8-31: FITS structure of DU Temperature Gain Correction CALDB file

8.9.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	А	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground
DET_ID	Α	See Section 4.5.3	

 Table 8-32: Peak Gain Map CALDB Primary Header keywords

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 49 of 79	

8.9.2.2 TEMPGAIN Extension: Header

The following table lists keywords used in the TEMPGAIN header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in this header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'TEMPGAIN'
FILENAME	А	Name of CALDB file	'ixpe_d1_200523_tempgain_01.fits', e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE Temperature Gain'
CCLS0001	Α	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'TEMPGAIN'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	Α	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', eg.
CDES0001	А	Description of the contents of this file	'IXPE Temperature Gain coefficients'

 Table 8-33: TEMPGAIN Extension Header keywords

8.9.2.3 TEMPGAIN Extension: Table Columns

The table itself is a list of the peak gain measurement times, detected (post-ixpeevtrecon) weighting coefficients, slopes, and offsets. Data are supplied for each usable DU temperature, and therefore occupy 11 columns by 1 row. The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
GPD_COEFF	Е	N/A	Weighting coefficient for GPD temperature
DAQ1_COEFF	Е	N/A	Weighting coefficient for DAQ1 temperature
DAQ2_COEFF	Е	N/A	Weighting coefficient for DAQ2 temperature
HV1_COEFF	Е	N/A	Weighting coefficient for HV1 temperature
HV2_COEFF	Е	N/A	Weighting coefficient for HV2 temperature.
LVPS1V5_COEFF	Е	N/A	Weighting coefficient for LVPS 1.5V temperature
LVPS1V8_COEFF	Е	N/A	Weighting coefficient for LVPS 1.8V temperature
LVPS3V3_COEFF	Е	N/A	Weighting coefficient for LVPS 3.3V temperature
TEMP_SLOPE	Е	N/A	Slope of gain change vs temperature change
TEMP_OFFSET	E	PHA	Gain change offset (PHA at reference temperature)
TEMP_REF	Е	С	Reference temperature for nominal gain

 Table 8-34: Temperature Gain Table Columns

8.10 Detector Unit (DU) ASIC Correction CALDB file

8.10.1 Description

The Detector ASIC Correction CALDB is a list of the ASIC correction values (scalar) for each detector.

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 50 of 79	

8.10.2 Format

The format of the ASIC correction files is a standard CALDB fits file, with a primary HDU.

Table 8-35:	FITS structure	of DU Noise	Map	CALDB file
		01 2 0 1 10100		0.1112.2.1110

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	ASICCOR	ASIC Correction keywords and data table

8.10.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
ACORR1	J	ASIC correction (value to subtract from pixels) for DU1	5
ACORR2	J	ASIC correction (value to subtract from pixels) for DU2	5

8.10.2.2 ASICCORR Extension: Header

The following table lists keywords used in the ASICCORR header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in this header and will not be repeated in the table below.

 Table 8-37: ASICCORR Extension Header keywords

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'ASICCORR'
FILENAME	А	Name of CALDB file	'ixpe_d1_20170101_asiccorr_01.fits', e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE DU ASIC CORRECTION'
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'ASICCORR'
CVSD0001	А	Date when this file should first be used (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'IXPE ASIC Correction coefficients'

8.10.2.3 ASICCORR Extension: Table Columns

The table itself is a list of the ASIC corrections for a single detector, consisting of two columns and 1 row. The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

Table 8-38: ASICCORR Extension Table Columns

Name	Туре	Units	Description

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 51 of 79

CoherentNoiseOffset	D	N/A	Coherent noise ASIC offset
TriggerMiniclusterOffset	D	N/A	Trigger Mini-cluster ASIC offset

8.11 Detector Unit (DU) Spurious Modulation map CALDB file

8.11.1 Description

The DU spurious modulation map CALDB file contains the energy-dependent spurious modulation information as a function of off-axis angle of the collimator of each detector unit.

8.11.2 Format

The format of the DU spurious modulation map is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the spurious modulation data. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Table 8-39: FITS structure of DU Spurious Modulation CALDB file

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	SPMOD	Spurious modulation table data

8.11.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	А	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc on ground
DET_ID	Α	See Section 4.5.3	

Table 8-40: DU Residual modulation CALDB Primary Header keywords

8.11.2.2 SPMOD Extension: Header

The following table lists keywords used in the DU spurious modulation Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the DU spurious modulation Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'SPMOD'
FILENAME	А	Name of CALDB file	'ixpe_d1_200523_rpmod_01.fits', e.g.
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'SPMOD'
CVSD0001	Α	Date when this file should first be used (TT)	'2021-01-03', e.g.

Table 8-41: SPMOD Extension Header keywords

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 52 of 79		

CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'IXPE Det1 spurious modulation ARF correction'

8.11.2.3 SPMOD Extension: Table Columns

The table itself is an array of energy bin lower limits, an array of energy bin upper limits, an array of angles, and an array of spurious modulation for each combination of energy bin and angle. The data occupy 7 columns by N rows, where N is the number of pixels (300x300 = 90000) measured. Note that many of the columns are array columns and not single-value columns as described in the table below. The data type codes used in the "Type" column are defined in Appendix B. Note that the energy, q_sm, u_sm, dq_sm, and du_sm columns have 6 values, equal to the number of energies at which the spurious modulation was mapped.

Name	Туре	Units	Description
DETX_PX	Ι	Pixel	Detector x-position bin (0-300)
DETY_PX	Ι	Pixel	Detector y-position bin (0-300)
PI	6E	Channel	Detector energy of source from which this map data was derived (values are 51, 57, 55, 77, 92, 148, which correspond to input energies of 2, 2.2, 2.7, 3, 3.7 and 6 keV).
DETQ_SM	6E	Dimensionless	Spurious initial electron track direction modulation (Stokes q component in detector coordinates)
DETU_SM	6E	Dimensionless	Spurious initial electron track direction modulation (Stokes u component in detector coordinates)
DETQ_SM	6E	Dimensionless	Standard error of Q_SM
DETU_SM	6E	Dimensionless	Standard deviation of U_SM

Table 8-42: SPMOI) Extension	Table	Columns
-------------------	-------------	-------	---------

8.12 Payload sub-system alignment CALDB file

8.12.1 Description

The payload sub-system alignment CALDB file contains both translations of the DUs and the MMAs from the spacecraft coordinate origin and alignment quaternions of the DU's, MMA optical axes, and star trackers. All quaternions are in scalar-last format (x, y, z, w). These are used to transform the DU position of an x-ray event into spacecraft coordinates, project the event through the MMA onto the sky, and align that projection with J2000 celestial coordinates using the star tracker data. The alignment CALDB file will be created by the SOC from measurements taken during spacecraft integration by Ball Aerospace.

8.12.2 Format

The format of the alignment file is a standard CALDB fits file, with a primary header and a two extension for the binary tables that holds the system and optical alignment data. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	SYSTEM_ALIGNMENT	System alignment binary table data

Table 8-43: FITS structure of sub-system alignment CALDB file

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 53 of 79	

8.12.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	А	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground
DET_ID	Α	See Section 4.5.3	

 Table 8-44: Alignment CALDB Primary Header keywords

8.12.2.2 SYSTEM_ALIGNMENT Extension: Header

The following table lists keywords used in the System Alignment Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the System Alignment Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'SYSTEM_ALIGNMENT'
FILENAME	А	Name of CALDB file	'ixpe_a0_200523_align_01.fits', e.g.
CONTENT	А	Description of the contents of this HDU	'IXPE Alignment'
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'ALIGNMENT'
CBD10001	А	Parameter boundary for type of data	'TYPE(SYSTEMS)'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'IXPE Alignment of sub-coordinate systems'

 Table 8-45: SYSTEM_ALIGNMENT Extension Header keywords

8.12.2.3 SYSTEM_ALIGNMENT Extension: Table Columns

The table itself is a list of the offsets and orientations of each payload sub-system relative to the space craft, focal plane, or optical bench. This results in 28 columns with a single row. The table below describes the columns. The data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
V_IN_SC	3D	mm	Vector of SC origin in inertial coordinates
Q_IN_SC	4D	Dimensionless	Quaternion to transform SC to inertial coordinates
V_SC_FP	3D	mm	Vector of focal plane origin in spacecraft coordinates
Q_SC_FP	4D	Dimensionless	Quaternion to transform focal plane to spacecraft coordinates

Table 8-46: SYSTEM_ALIGNMENT Extension Table Columns

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 54 of 79	

V_FP_DU1	3D	mm	Vector of DU1 origin in focal plane coordinates
Q_FP_DU1	4D	Dimensionless	Quaternion to transform DU1 to focal plane coordinates
Q_FP_TEL1	4D	Dimensionless	Quaternion to correct for telescope 1 (DU1, MMA1) pointing axis
V_FP_DU2	3D	mm	Vector of DU2 origin in focal plane coordinates
Q_FP_DU2	4D	Dimensionless	Quaternion to transform DU2 to focal plane coordinates
Q_FP_TEL2	4D	Dimensionless	Quaternion to correct for telescope 2 (DU2, MMA2) pointing axis
V_FP_DU3	3D	mm	Vector of DU3 origin in focal plane coordinates
Q_FP_DU3	4D	Dimensionless	Quaternion to transform DU3 to focal plane coordinates
Q_FP_TEL3	4D	Dimensionless	Quaternion to correct for telescope 3 (DU3, MMA3) pointing axis
V_FP_AS1	3D	mm	Vector of aperture stop 1 origin in focal plane coordinates
Q_FP_AS1	4D	Dimensionless	Quaternion to transform AS1 to focal plane coordinates
V_FP_AS2	3D	mm	Vector of aperture stop 2 origin in focal plane coordinates
Q_FP_AS2	4D	Dimensionless	Quaternion to transform AS2 to focal plane coordinates
V_FP_AS3	3D	mm	Vector of aperture stop 3 origin in focal plane coordinates
Q_FP_AS3	4D	Dimensionless	Quaternion to transform AS3 to focal plane coordinates
V_FP_OA	3D	mm	Vector of optical assembly origin in focal plane coordinates
Q_FP_OA	4D	Dimensionless	Quaternion to transform optical assembly to focal plane coordinates (TTR transform)
V_OA_MMA1	3D	mm	Vector position of MMA1 in optical assembly coordinates
V_OA_MMAX1	3D	Dimensionless	Pointing vector of MMA1 optical axis in optical assembly coordinates
V_OA_MMA2	3D	mm	Vector position of MMA2 in optical assembly coordinates
V_OA_MMAX2	3D	Dimensionless	Pointing vector of MMA2 optical axis in optical assembly coordinates
V_OA_MMA3	3D	mm	Vector position of MMA3 in optical assembly coordinates
V_OA_MMAX3	3D	Dimensionless	Pointing vector of MMA3 optical axis in optical assembly coordinates
V_SC_OH1	3D	mm	Vector of origin of Star Tracker optical head 1 in spacecraft coordinates
Q_SC_OH1	4D	Dimensionless	Quaternion to transform Star Tracker optical head 1 to spacecraft coordinates
V_SC_OH2	3D	mm	Vector of origin of Start Tracker optical head 2 in spacecraft coordinates
Q_SC_OH2	4D	Dimensionless	Quaternion to transform Start Tracker optical head 2 to spacecraft coordinates

8.13 Mirror Module Unit (MMA) Encircled energy function CALDB

8.13.1 Description

The encircled energy function CALDB file describes the position resolution of a MMA with a table of annulus radii and the fraction of the total counts from a point source contained within that annulus. It is used as to calculate an ancillary response function.

8.13.2 Format

The format of the DU encircled energy function is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the encircled energy data. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Section/Header	Name	Description
Primary	-	FITS-required primary header

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 55 of 79

Extension 1	REEF	Radial encircled energy function table data

8.13.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

	Tuble & Tot Minist chert cheu chergy Chille D Trimary Freuder hey words			
Keyword Name	Туре	Description	Value/Range	
INSTRUME	А	Instrument of the telescope	XRT	
DETNAM	А	Name of the Detector Unit of the instrument	MMA1, MMA2, MMA3, MMA4	

Table 8-48: MMA encircled energy CALDB Primary Header keywords

8.13.2.2 REEF Extension: Header

The following table lists keywords used in the Encircled Energy Table (REEF) binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the Encircled Energy Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'REEF'
1CTYP7	А	First axis label	'SPATIAL_OFFSET'
2CTYP7	А	Second axis label	'COORD-1'
3CTYP7	А	Third axis label	'COORD-2'
4CTYP7	А	Fourth axis label	'ENERGY'
CREF7	А	Column referencing	'(RAD_LO:RAD_HI,THETA,PH I,ENERG_LO:ENERG_HI)'
CSYSNAME	А	Spatial coordinate system in use	'XNA_POL', e.g.
HDUCLASS	А	Class of HDU	'OGIP'
HDUCLAS1	А	Sub-classification of OGIP class	'RESPONSE'
HDUCLAS2	А	Sub-classification of RESPONSE class	'REEF'
HDUCLAS3	А	Sub-classification of REEF class	'NET'
HDUVERS	А	Version of format	'1.0.0', e.g.
HDUDOC	А	OGIP memo for File Format definition	'CAL/GEN/92-020'
AREA_WGT	Е	Area weighting factor	'1.00000', e.g.
ENERG_LO	Е	Lower energy bound	'1.50000', e.g.
ENERGY_HI	Е	Upper energy bound	'8.00000', e.g.
PHI	Е	Value of azimuthal angle	'0.0', e.g.
EXTVER	J	Extension number of this HDU	1
VERSION	J	Extension version number	1
FILENAME	А	Name of CALDB file	'ixpe_d1_200523000000_eef_01.f its', e.g.
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'

 Table 8-49: REEF Extension Header keywords

IXPE Science Operations Center				
Title: User Guide — Data FormatsDocument No.: IXPE-SOC-DOC-007Revision: D				
	Effective Date: 2022-07-22	Page: 56 of 79		

CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'REEF'
CBD10001	А	Energy parameter boundary	'ENERGY(2.2-7.0)keV', e.g.
CBD20001	А	Off-axis angle boundary	'THETA(-8-8)arcmin', e.g.
CBD30001	А	Azimuthal angle boundary	'PHI(0-135)deg', e.g.
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	A	Description of the contents of this file	'Radial Enclosed Energy Fraction Profiles Based on SLTF Tests'

8.13.2.3 REEF Extension: Table Columns

The table itself is an array of angular bin lower limits, an array of angular bin upper limits, an array of off-axis angles for the source, a value of azimuthal angle, and an array of radial encircled energies for each combination of radial bin and off-axis angle. The data occupy 7 columns by 4 rows, but the columns are array columns and not single-value columns as described in the table below. The data type codes used in the "Type" column are defined in Appendix B. Note that radial bin columns have 1440 values equal to the number of bins, the energy column has 3 values (equal to the number of energy bins), and the encircled energy array has 1440×17 values.

Table 8-50: REEF	F Extension	Table	Columns
------------------	-------------	-------	---------

Name	Туре	Units	Description
RAD_LO	1440E	arcsec	Radial bin inner radius
RAD_HI	1440E	arcsec	Radial bin outer radius
THETA	51E	arcmin	Theta setting
PHI	K	deg	Phi
ENERGY_LO	3E	keV	Lower bound of Energy band of x-ray source for each measurement
ENERGY_HI	3E	keV	Upper bound of Energy band of x-ray source for each measurement
REEF	24480E	Dimensionless	Radial encircled energy function

8.14 Detector Unit (DU) Quantum efficiency CALDB

8.14.1 Description

The DU quantum efficiency or collection efficiency CALDB files describe the fraction of incoming photons expected to be absorbed in the detector as a function of the energy of the incoming photons. It can used to calculate an ancillary response function (ARF)

8.14.2 Format

The format of the DU quantum efficiency files is function is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the quantum efficiency data. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Fable 8-51:	FITS s	tructure	of DU	quantum	efficiency	CALDB	file
				1	•		

		-	•
Section/Header	Name	Description	

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 57 of 79		

Primary	-	FITS-required primary header
Extension 1	QE	Quantum efficiency table data

8.14.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	GPD
DETNAM	А	Name of the Detector Unit of the instrument	 DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground
DET_ID	А	See Section 4.5.3	

 Table 8-52: DU Quantum Efficiency CALDB Primary Header keywords

8.14.2.2 QE Extension: Header

The following table lists keywords used in the Quantum Efficiency Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the Quantum Efficiency Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'QE'
HDUCLASS	А	Class of HDU	'ASC'
HDUCLAS1	А	Sub-classification of ASC class	'DETCHAR'
HDUCLAS2	А	Sub-classification of RESPONSE class	'QE'
HDUCLAS3	А	Sub-classification of QE class	'MEAN'
HDUVERS	А	Version of format	'1.0.0', e.g.
HDUDOC	А	OGIP memo for File Format definition	'ASC-FITS-2.0', e.g.
FILENAME	А	Name of CALDB file	'ixpe_d1_200523000000_qe_01.fits', e.g.
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'QE'
CVSD0001	А	Date when this file should first be used (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	A	Description of the contents of this file	'IXPE DU1 mean quantum efficiency', e.g.

Table 8-53: QE Extension Table Header keywords

8.14.2.3 QE Extension: Table Columns

The table itself is an array of detector radius bin lower limits, an array of detector radius bin upper limits, an array of off-axis angles, a value of azimuthal angle, and an array of radial encircled energies for each combination of radial bin and off-axis angle. The data occupy 3

IXPE Science Operations Center			
Title: User Guide — Data Formats Document No.: IXPE-SOC-DOC-007 Revision: D			
	Effective Date: 2022-07-22	Page: 58 of 79	

columns by 3 rows, where the number of rows is the number of energies at which the quantum efficiency is measured.

Name	Туре	Units	Description
ENERGY	Е	keV	Energy
QE	E	Dimensionless	Quantum efficiency at this energy
SYS_MIN	E	Dimensionless	Systematic minimum (negative) error

Table	8-54:	OE	Extension	Table	Columns
-		~~	Lincension	1 4010	Condition

8.15 MMA Effective Area CALDB

8.15.1 Description

The MMA effective area CALDB file gives the effective area of a mirror assembly as a function of photon energy, off-axis angle, and azimuthal angle of incidence. It can be used to calculate an ancillary response function (ARF).

8.15.2 Format

The format of the MMA effective-area function is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the effective-area data. The table below lists the HDU sections. The following subsections describe the HDUs and their subsections.

Section/HeaderNameDescriptionPrimary-FITS-required primary headerExtension 1AXEFFAEffective area function table data

 Table 8-55: FITS structure of MMA effective area CALDB file

8.15.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	XRT
DETNAM	А	Specific MMA designation	MMA1, MMA2, MMA3 or MMA4
DET_ID	А	See Section 4.5.3	

Table 8-56: MMA Effective Area CALDB Primary Header keywords

8.15.2.2 AXEFFA Extension: Header

The following table lists keywords used in the MMA Effective Area Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the MMA Effective Area Table Header and will not be repeated in the table below.

Fable 8-57: AXEFFA	Extension	Header	keywords
--------------------	-----------	--------	----------

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'AXEFFA'

IXPE Science Operations Center			
Title: User Guide — Data Formats Document No.: IXPE-SOC-DOC-007 Revision: D		Revision: D	
	Effective Date: 2022-07-22	Page: 59 of 79	

HDUCLASS	А	Class of HDU	'OGIP'
HDUCLAS1	А	Sub-classification of OGIP class	'RESPONSE'
HDUCLAS2	А	Sub-classification of RESPONSE class	'AXEFFA'
HDUVERS1	А	Version of family of format	'1.0.0', e.g.
HDUVERS2	А	Version of format (OGIP memo CAL/GEN/92-021))	'1.1.0'
FILENAME	А	Name of CALDB file	'ixpe_m1_200523_eaf_01.fits', e.g.
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'AXEFFA'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	Α	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	Α	Description of the contents of this file	'IXPE MMA1 AXIAL EFFECTIVE AREA', e.g.

8.15.2.3 AXEFFA Extension: Table Columns

The table itself is an array of energy-bin lower limits, an array of energy-bin upper limits, an array of angles, and an array of effective area for each combination of energy bin and angle. The data occupy 4 columns by 1 row, but the columns are array columns and not single-value columns as described in the table below. The data type codes used in the "Type" column are defined in Appendix B. Note that each column has 375 sub-columns equal to the number of energy bins measured.

Name	Туре	Units	Description
ENERG_LO	375E	keV	Energy-bin lower bound
ENERG_HI	375E	keV	Energy-bin upper bound
AXEFFA	375E	cm**2	On-axis effective area of mirror plus thermal shield
MAXEFFA	375E	cm**2	On-axis effective area of MMA
TSXTRANS	375E	Dimensionless	On-axis relative transmission of thermal shield

Table 8-58: AXEFFA Extension Table Columns

8.16 MMA 2-D Point Spread Function CALDB file

8.16.1 Description

The MMA point spread function defines the effects of the MMA on the position of an event. Specifically, it gives the probability of an event falling within a given position relative to the theoretical position of focus for the MMA. This is a function of both energy and offset angle.

8.16.2 Format

The format of the MMA 2-D point spread function is a standard CALDB FITS file, with a primary header and 195 2-D point spread function images, one for each unique setting of energy, THETA angle (magnitude of offset from the optical axis) and PHI angle (azimuthal direction of THETA offset). The data were taken with three values of ENERG: 6.40 keV, 4.51 k3V, and 2.29 keV. There are 4 values of THETA: 0, 45, 90, and 135 degrees. Finally, there are 16 values of PHI: -8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, and 8 (arc minutes). Note that this

IXPE Science Operations Center			
Title: User Guide — Data Formats Document No.: IXPE-SOC-DOC-007 Revision: D			
	Effective Date: 2022-07-22	Page: 60 of 79	

give 3 * 4 * 16 = 192 images. There are three additional images: 1 for each energy at a PHI of 0 and a THETA of 0 (since all values of THETA are degenerate for PHI = 0). The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1-195	Unique to Energy, PHI and THETA used.	Radial point spread function images

 Table 8-59: FITS structure of MMA 2-D point spread function CALDB file

8.16.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	MMA
DETNAM	А	Specific MMA designation	MMA1, MMA2, MMA3 or MMA4.
DET_ID	А	See Section 4.5.3	

 Table 8-60: MMA 2-D point spread CALDB Primary Header keywords

8.16.2.2 IMAGE Extensions: Header

The following table lists keywords used in the MMA Radial point spread function Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the MMA Radial point spread function Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'PSF_6404_045', e.g.
FILENAME	Α	Name of CALDB file	'ixpe_m1_200523_psfimage_01.fits', e.g.
CCLS0001	A	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	Α	Calibration data type	'DATA'
CCNM0001	Α	Type of calibration data	'2D_PSF'
CVSD0001	А	Date when this file should first be used (TT)	'2021-01-03', e.g.
CVST0001	A	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	A	Description of the contents of this file	'IXPE MMA1 point spread function image'
CBD10001	Α	Description of THETA angle	"THETA(-4)arcmin", e.g.
CBD20001	А	Description of PHI angle	"PHI(45)deg", e.g.
CBD30001	А	Description of energy	"ENERG(6.40)keV", e.g.
HDUCLAS1	А	HDU classification (1)	"IMAGE"

 Table 8-61: MMA Radial point spread function Table Header keywords

IXPE Science Operations Center					
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D			
	Effective Date: 2022-07-22	Page: 61 of 79			

HDUCLAS2	А	HDU classification (2)	"PSF"
HDUCLAS3	А	HDU classification (3)	"OBSERVED"
HDUCLAS4	А	HDU classification (4)	"NET"

8.17 MMA Vignetting CALDB file

8.17.1 Description

The Mirror Module Assembly (MMA) vignetting files defines the vignetting effects of the MMA on counting rates as a function of energy and off-axis position. Specifically, it gives the effect on counting rate as a fraction of the counting rate expected on axis.

8.17.2 Format

The format of the MMA vignetting function is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the vignetting data. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Table	8-62:	FITS	structure	of MMA	vignetting	CALDB file
Lanc	0-04.	TITO	suucuuc	OI IVIIVIII	vignetting	CILDD Inc

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	VIGNET	Vignetting function table data

8.17.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	MMA
DETNAM	А	Specific MMA designation:	MMA1, MMA2, MMA3 or MMA4
DET_ID	А	See Section 4.5.3	

Fable 8-63• MMA	vignetting	CALDR	Primary	Header	keywords
able o-05. MIMIA	vignetung	CALDD	1 i iiiiai y	Ileauer	Keyworus

8.17.2.2 VIGNET Extension: Header

The following table lists keywords used in the MMA Vignetting Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the MMA Vignetting Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'VIGNET'
HDUCLASS	А	Class of HDU	'OGIP'
HDUCLAS1	А	Sub-classification of OGIP class	'RESPONSE'
HDUCLAS2	А	Sub-classification of RESPONSE class	'VIGNET'
HDUVERS1	А	Version of family of format	'1.0.0', e.g.

Table 8-64: VIGNET Extension Header keywords

IXPE Science Operations Center					
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D			
	Effective Date: 2022-07-22	Page: 62 of 79			

		_	
HDUVERS2	А	Version of format (OGIP memo CAL/GEN/92-021)	'1.1.0'
1CTYP3	А	OGIP label of first axis	'Energy'
2CTYP3	А	OGIP label of second axis	'THETA'
CREF3	А	Column referencing	'(ENERG_LO:ENERG_HI, THETA)'
FILENAME	А	Name of CALDB file	'ixpe_m1_200523000000_vign_01.fits', e.g.
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'TVIGNET'
CVSD0001	А	Date when this file should first be used (TT)	'2021-01-03', e.g.
CVST0001	A	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'IXPE MMA1 Vignetting'

8.17.2.3 VIGNET Extension: Tab;e Columns

The table itself is an array of energy-bin lower limits, an array of energy-bin upper limits, an array of angles, and an array of vignetting for each combination of energy bin and angle. The data occupy 4 columns by 1 row, but the columns are array columns and not single-value columns as described in the table below. The data type codes used in the "Type" column are defined in Appendix B. Note that the energy columns have 3 values equal to the number of energy bins, the angle column has 17 values equal to the number of angle bins, and the vignetting functions has $3 \times 17 = 51$.

Name	Туре	Units	Description
ENERG_LO	3E	keV	Energy-bin lower bound
ENERG_HI	3E	keV	Energy-bin upper bound
THETA	17E	arc min	Angle bins
VIGNET	51E	Dimensionless	Vignetting function

 Table 8-65: VIGNET Extension Table Columns

8.18 MMA Thermal Shield Transmission CALDB

8.18.1 Description

The MMA thermal shield transmission CALDB defines the transmission of the thermal shield material surrounding the MMA's. The material is not the same thickness for all the MMAs, so the transmission is given for two different thicknesses (1.35 and 1.60 microns).

8.18.2 Format

The format of the DU window/filter transmission files is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the window/filter transmission data. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

	Section/Header Name Description	<u>n</u>
--	---------------------------------	----------

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 63 of 79

Primary	-	FITS-required primary header
Extension 1	TS_TRANS	Transmission table data for the MMA thermal shields

8.18.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

			•
Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	MMA
DETNAM	А	Name of the MMA	MMA0

 Table 8-67: DU Window/filter transmission CALDB Primary Header keywords

8.18.2.2 TS_TRANS Extension: Header

The following table lists keywords used in the MMA Thermal Shield Transmission Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the Window/filter transmission Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'TS_TRANS'
FILENAME	А	Name of CALDB file	'ixpe_m0_20210103_tstrans_01.fits', e.g.
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'BCF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'FTRANS'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'Thermal shield transmission at 1.35 and 1.60 µm thickness', e.g.

 Table 8-68: TS_TRANS Extension Header keywords

8.18.2.3 TS_TRANS Extension: Table Columns

The table itself is an array of energies at which the transmission is measured, and the relative transmission of the given thickness of the thermal shield material at that energy. The data occupy 3 columns by 112 rows, where the number of rows is the number of energies at which the transmission is measured.

Name	Туре	Units	Description
ENERGY	1D	keV	Energy
TRANS135	1D	Dimensionless	Transmission of 1.35 µm of material.
TRANS160	1D	Dimensionless	Transmission of 1.60 µm of material.

Table 8-69: TS_TRANS Extension Table Columns

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 64 of 79

8.19 Telescope Ancillary Response CALDB file

8.19.1 Description

The telescope ancillary response contains combined effects MMA effective area, MMA vignetting, DU collimator vignetting, DU filter and/or DU window transmission, and DU quantum efficiency as a function of energy averaged over time. This gives a calibrated value of the response of the telescope to x-rays of various energies and is used to determine the effective area of the entire optical train.

8.19.2 Format

The format of the Telescope ancillary response function is a standard CALDB FITS file, with a primary header and a single extension for the binary table that holds the ancillary response data. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Table 8-70: FITS structure of Telescope ancillary response CALDB file

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	SPECRESP	Ancillary response function table data

8.19.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument of the telescope	MMA
DETNAM	А	Specific MMA designation:	MMA1, MMA2, MMA3 or MMA4
DET_ID	А	See Section 4.5.3	

Table 8-71: Telescope ancillary response CALDB Primary Header keywords

8.19.2.2 SPECRESP Extension: Header

The following table lists keywords used in the Telescope ancillary response Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the Telescope ancillary response Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'SPECRESP'
HDUCLASS	А	Class of HDU	'OGIP'
HDUCLAS1	А	Sub-classification of OGIP class	'RESPONSE'
HDUCLAS2	А	Sub-classification of RESPONSE class	'SPECRESP'
HDUVERS1	А	Version of family of format	'1.0.0', e.g.
HDUVERS2	А	Version of format (OGIP memo CAL/GEN/92-021)	'1.1.0'
IRFTYPE	А	Type of file	'arf'

 Table 8-72: SPECRESP Extension Header keywords

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 65 of 79

FILENAME	А	Name of CALDB file	'ixpe_m1_200523_arf_01.fits', e.g.
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'CPF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'SPECRESP'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CDES0001	А	Description of the contents of this file	'IXPE DU1 Ancillary Response File"
CBD10001	A	Description of parameter bounds	'WEIGHT(NONE)" or "WEIGHT(ALPHA075)"

8.19.2.3 SPECRESP Extension: Table Columns

The table itself is an array of energy-bin lower limits, an array of energy-bin upper limits, and an array of ancillary response function for each energy bin. The data occupy 3 columns by 275 rows. The data type codes used in the "Type" column are defined in Appendix B. Note that each column has n values equal to the number of energy bins measured.

Name	Туре	Units	Description
ENERG_LO	Е	keV	Energy-bin lower bound
ENERG_HI	Е	keV	Energy-bin upper bound
SPECRESP	Е	cm**2	On-axis ancillary response function

8.20 DU Modulation Factor CALDB

8.20.1 Description

The DU modulation factor CALDB is used to calculate the polarization modulation factor as a function of input energy.

8.20.2 Format

The format of the DU modulation factor files is a standard CALDB FITS file, with a primary header, an extension for the binary table that holds the energy bounds and the corresponding modulation factor response for each energy bound. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Table 8-74: FITS structure of Modulation Factor CALDB file
--

Section/Header	Name	Description	
Primary	-	FITS-required primary header	
Extension 1 SPECRESP		Modulation factor as a function of input energy.	

8.20.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 66 of 79		

Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument name	GPD
DETECTOR	А	Name of the Detector Unit of the instrument	DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground

8.20.2.2 SPECRESP Extension: Header

The following table lists keywords used in the Modulation Factor Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the Modulation Factor Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'SPECRESP'
HDUCLASS	А	Class of HDU	'OGIP'
HDUCLAS1	А	Sub-classification of OGIP class	'RESPONSE'
HDUCLAS2	А	Sub-classification of RESPONSE class	'SPECRESP"
HDUVERS1	А	Version of family of format	'1.0.0', e.g.
HDUVERS2	А	Version of format (OGIP memo CAL/GEN/92-021)	'1.3.0'
HDUDOC	А	OGIP document describing content	'OGIP memos CAL/GEN/92- 002 & 92-002a'
IRFTYPE	А	Type of file	"modf"
FILENAME	А	Name of CALDB file	'ixpe_t1_200523_mfact_01.fits', e.g.
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'CPF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'MODFACT'
CVSD0001	А	Date when this file should first be used. (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CBD10001	А	Parameter boundaries of detector channels	'WEIGHT(NONE)' or 'WEIGHT(ALPHA075)"
CDES0001	A	Description of the contents of this file	'IXPE reference DU1 Modulation Factor', e.g.

Table 8-76: SPECRESP Extension Header keywords

8.20.2.3 SPECRESP Extension: Table Columns

The table itself is an array of energy-bin lower limits, an array of energy-bin upper limits, and an array of modulation factor response functions for each energy bin. The data occupy 3 columns by 275 rows. The data type codes used in the "Type" column are defined in Appendix B. Note that the MATRIX columns have n values equal to the number of detector energy bins.

Name	Туре	Units	Description

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 67 of 79		

ENERG_LO	E	keV	Low-energy limit for this band
ENERG_HI	Е	keV	High-energy limit for this band
SPECRESP	Е	N/A	Modulation factor response for this band

8.21 DU Modulation Response Function CALDB

8.21.1 Description

The DU modulation factor CALDB is used to calculate the effective area for polarization modulation as a function of input energy.

8.21.2 Format

The format of the DU modulation response files is a standard CALDB FITS file, with a primary header, an extension for the binary table that holds the energy bounds and the corresponding modulation response function for each energy bound. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

,	Table 8-78: FITS s	structure of Modulation	Response Function	CALDB file

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	SPECRESP	Modulation response function as a function of input energy

8.21.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Table 8-79: Modulation Response Function	CALDB Primary Header keywords
---	-------------------------------

Keyword Name	Type	Description	Value/Range
INSTRUME	А	Instrument name	GPD
DETECTOR	А	Name of the Detector Unit of the instrument	DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground

8.21.2.2 SPECRESP Extension: Header

The following table lists keywords used in the Modulation Response Function Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the Modulation Response Function Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'SPECRESP'
HDUCLASS	А	Class of HDU	'OGIP'
HDUCLAS1	А	Sub-classification of OGIP class	'RESPONSE'
HDUCLAS2	А	Sub-classification of RESPONSE class	'SPECRESP"
HDUVERS1	А	Version of family of format	'1.0.0', e.g.
HDUVERS2	А	Version of format (OGIP memo CAL/GEN/92-021)	`1.3.0'

Table 8-80: SPECRESP Extension Header keywords

IXPE Science Operations Center				
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 68 of 79		

HDUDOC	А	OGIP document describing content	'OGIP memos CAL/GEN/92-002 & 92-002a'
IRFTYPE	А	Type of file	"mrf"
FILENAME	А	Name of CALDB file	'ixpe_t1_20200523_01.mrf', e.g.
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'CPF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'MODSPECRESP'
CVSD0001	А	Date when this file should first be used (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CBD10001	А	Parameter boundaries of detector channels	'WEIGHT(NONE)' or 'WEIGHT(ALPHA075)"
CDES0001	А	Description of the contents of this file	'IXPE reference DU1 Modulation Factor', e.g.

8.21.2.3 SPECRESP Extension: Table Columns

The table itself is an array of energy-bin lower limits, an array of energy-bin upper limits, and an array of modulation response functions for each energy bin. The data occupy 3 columns by 275 rows. The data type codes used in the "Type" column are defined in Appendix B. Note that the MATRIX columns have n values equal to the number of detector energy bins.

Name	Туре	Units	Description
ENERG_LO	Е	keV	Low-energy limit for this band
ENERG_HI	Е	keV	High-energy limit for this band
SPECRESP	E	cm**2	Modulation factor response for this band

8.22 Telescope Response Matrix CALDB

8.22.1 Description

The telescope response matrix file combines the detector gain and detector energy resolution CALDB data to define the response of the detector to photons of a given energy. It is used to give the most probable energy range for each measured pulse height amplitude, and to fold input spectra into detector response histograms.

8.22.2 Format

The format of the telescope response matrix files is a standard CALDB FITS file, with a primary header, an extension for the binary table that holds the energy bounds, and an extension for the binary table that holds the spectral response matrix data. The table below lists the HDU sections. The following subsections describe the HDU's and their subsections.

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	EBOUNDS	Energy bounds table data
Extension 2	MATRIX	Spectral response matrix table data

Table 8-82:	FITS	structure	of RMF	CALDB	file
-------------	------	-----------	--------	-------	------

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 69 of 79	

8.22.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.5 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

		Ũ	5
Keyword Name	Туре	Description	Value/Range
INSTRUME	А	Instrument name	GPD
DETECTOR	А	Name of the Detector Unit of the instrument	DU1, DU2, DU3, DU4 in flight 018, 019, 020, etc. on ground

Table 8-83: RMF CALDB Primary Header keywords

8.22.2.2 EBOUNDS Extension: Header

The following table lists keywords used in the Energy Bounds Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and UNITS of the table columns. All the header keywords from the Primary Header are repeated in the Energy Bounds Table Header and will not be repeated in the table below.

Keyword Name	Type	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'EBOUNDS'
HDUCLASS	А	Class of HDU	'OGIP'
HDUCLAS1	А	Sub-classification of OGIP class	'RESPONSE'
HDUCLAS2	А	Sub-classification of RESPONSE class	'EBOUNDS
CHANTYPE	А	Channel type	"PI"
HDUVERS1	А	Version of family of format	'1.0.0', e.g.
HDUVERS2	А	Version of format (OGIP memo CAL/GEN/92-021)	'1.3.0'
HDUDOC	А	OGIP document describing content	'OGIP memos CAL/GEN/92-002 & 92-002a'
IRFTYPE	А	File type	"rmf"
FILENAME	А	Name of CALDB file	'ixpe_t1_200523_rmf_01.fits', e.g.
DETCHANS	J	Total number of detector channels.	375
TLMIN4	J	First channel number	0
TLMAX4	J	Last channel number	374
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'CPF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'EBOUNDS'
CVSD0001	А	Date when this file should first be used (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.
CBD10001	А	Parameter boundaries of detector channels	'WEIGHT(NONE)" or "WEIGHT(ALPH075)".

Table 8-84: EBOUNDS Extension Header keywords

IXPE Science Operations Center				
Title: User Guide — Data FormatsDocument No.: IXPE-SOC-DOC-007Revision: D				
	Effective Date: 2022-07-22	Page: 70 of 79		

1			
CDES0001	А	Description of the contents of this file	'IXPE TEL1 FPM EBOUNDS'

8.22.2.3 EBOUNDS Extension: Table Columns

The table itself is an array of detector channels, and an array of energy bounds for each detector channel. The data occupy 3 columns by n rows, where n is the number of energy bins in the detector. The data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
CHANNEL	J	Chan	Detector channel number
E_MIN	Е	keV	Energy minimum.
E_MAX	E	keV	Energy maximum

Table 8-85: EBOUNDS	Extension	Table	Columns
---------------------	------------------	-------	---------

8.22.2.4 MATRIX Extension: Header

The following table lists keywords used in the Response Matrix Table header. This secondary header is a binary table header. Keywords defined in this section are those that are not involved with the definition of the binary table shape nor the names, types, and units of the table columns. All the header keywords from the Primary Header are repeated in the Response Matrix Table Header and will not be repeated in the table below.

Keyword Name	Туре	Description	Value/Range/Example
EXTNAME	А	Name of the binary extension	'SPECRESP MATRIX'
HDUCLASS	А	Class of HDU	'OGIP'
HDUCLAS1	А	Sub-classification of OGIP class	'RESPONSE'
HDUCLAS2	А	Sub-classification of RESPONSE class	'RSP_MATRIX"
CHANTYPE	А	Channel type	"РІ"
HDUVERS1	А	Version of family of format	'1.0.0', e.g.
HDUVERS2	А	Version of format (OGIP memo CAL/GEN/92-021)	'1.3.0'
HDUDOC	А	OGIP document describing content	'OGIP memos CAL/GEN/92-002 & 92-002a'
IRFTYPE	А	Type of file	"rmf"
FILENAME	А	Name of CALDB file	'ixpe_t1_200523_rmf_01.fits', e.g.
DETCHANS	J	Total number of detector channels	375
TLMIN4	J	First channel number	0
TLMAX4	J	Last channel number	374
CCLS0001	А	Type of dataset: Basic Calibration File (BCF) or Calibration Product File (CPF)	'CPF'
CDTP0001	А	Calibration data type	'DATA'
CCNM0001	А	Type of calibration data	'MATRIX'
CVSD0001	А	Date when this file should first be used (TT)	'2021-01-03', e.g.
CVST0001	А	Time of day when this file should first be used (TT, goes with date above)	'00:00:00', e.g.

Table 8-86: MATRIX Extension Header keywords

	IXPE Science Operations Center	
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 71 of 79

CBD10001	А	Parameter boundaries of detector channels	'WEIGHT(NONE)' or "WEIGHT(0750)"
CDES0001	А	Description of the contents of this file	'IXPE reference DU1 RESPONSE MATRIX', e.g.

8.22.2.5 MATRIX Extension: Table Columns

The table itself is an array of energy-bin lower limits, an array of energy-bin upper limits, an array of angles, and an array of response functions for each energy bin. The data occupy 6 columns by 275 rows, but the sixth column is an array of 375 columns and not single-value columns as described in the table below. Data type codes used in the "Type" column are defined in Appendix B. Note that the MATRIX columns have n values equal to the number of detector energy bins.

Name	Туре	Units	Description
ENERG_LO	Е	keV	Low-energy limit for this band
ENERG_HI	Е	keV	High-energy limit for this band
N_GRP	Ι	N/A	Number of groups
F_CHAN	Ι	N/A	First channel in matrix
N_CHAN	Ι	N/A	Number of channels in matrix
MATRIX	375E	N/A	Response matrix for this energy band

Table 8-87:	MATRIX	Extension	Table	Columns
				• • • • • • • • • • • • • • • • • • • •

9 Level-1 Science Support File data format

9.1 Description

Level-1 Science Support File data is data derived from both engineering data (usually Level 1) and science event data (usually post-Level 1 data with some corrections applied). The data is used to process science event data from Level 1 to Level 2.

Level 1 Science Support File data is most closely related to CALDB files in both structure and use. Structurally, the files contain a primary header and one or more uniquely named extensions that indicate how the file will be used. Functionally, the files are limited to a single observation segment, and may contain timing information in the extension headers that indicate the time bounds for which the given extension is to be used.

9.2 File naming convention

The Level-1 science support data filenames are of the form

ixpePPnnnnpp_inst_dtype_vxx.fits

The variable parts of the name are indicated by *italics*. The description, references, and range or list of valid values are given in the table below.

Variable	Description	Range or Values
PPnnnnpp	The IXPE observation Sequence Number	
inst	ID of the instrument which produced the data	= det1-3 for data specific to a single DU

Table 9-1: Level-1 Engineering data naming variable description

IXPE Science Operations Center			
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D	
	Effective Date: 2022-07-22	Page: 72 of 79	

dtype	Data type designation	chgmap1 – Charge map data	
		ppg1 – Periodic Peak Gain Map data	
xx	Two-digit version number	01 - 99	

9.3 Charge Map file

9.3.1 Description

The charge map file records the charging state of a given DU at the start of an observation segment. Thus, it is produced by processing the data from the previous observation segment. The file is used by ixpechrgcorr to correct the gain of the given DU due to charging of the GEM, and to calculate the charge map file for the next observation segment.

9.3.2 Format

The format of the charge map file is a standard FITS file, with a primary header and an extension for the binary table that holds the energy bounds, and an extension for the binary table that holds the charge map data. The table below lists the HDU sections. The following subsections describe the HDU's and their tables.

Table 9-2: FITS structure	of Charge Map files
---------------------------	---------------------

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1	CHRG_MAP	Charge map binary table extension

9.3.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.2 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
TLM2FITS	A	Version of software that converts the telemetry data to FITS data.	1.2, e.g.

Table 9-3: Charge Map Primary Header keywords

9.3.2.2 CHRG_MAP Extension: Header

The CHRG_MAP extension does not define any special-purpose keywords.

9.3.2.3 CHRG_MAP Extension: Table Columns

The table itself is an array of detector X and Y bin ID's, and the SLOW and FAST initial charge amplitude for that bin. The data occupy 4 columns by 2500 rows. This means that the detector area is divided into a square array of 50x50 bins. Data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
BINX	Ι	None	Bin ID of the X axis bin $(1 - 50)$.
BINY	Ι	None	Bin ID of the Y axis bin $(1 - 50)$.
FAST	D	None	Initial amplitude for the FAST charging model.

Table 9-4: C	CHRG_MAP	Extension	Table	Columns
--------------	----------	-----------	-------	---------
	IXPE Science Operations Center			
----------------------------------	--------------------------------	----------------		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D		
	Effective Date: 2022-07-22	Page: 73 of 79		

SLOW	D	None	Initial amplitude for the SLOW charging model.

9.4 Periodic Peak Gain Map file

9.4.1 Description

The periodic peak gain map file exists to model the Pulse Invariant (PI) value as a function of corrected Pulse Height Amplitude across the detector and as a function of time. It consists of a series of maps of the offset and slope of this linear model over the active surface of a given DU at various points of time. Measurements of calibration sources at different energies taken before and during the observation provide the basis for the model. The file is used by ixpegaincorrpkmap to correct the PI output of the given DU, and to calculate the initial periodic peak gain map data for the next observation segment.

9.4.2 Format

The format of the periodic peak gain map file is a standard FITS file, with a primary header and multiple extensions for the binary tables that hold the peak gain maps and the peaks of each of the two calibration sources used to derive the peak gain maps. These last two tables are the last two calibration peak maps from the previous observation. The table below lists the HDU sections for a file with N periodic peak gain map binary tables. Note that N is variable and depends on the number of calibrations taken during an observation segment. The following subsections describe the HDU's and their tables.

Section/Header	Name	Description
Primary	-	FITS-required primary header
Extension 1 - N	GAIN	Periodic peak gain map binary table extensions
Extension N+1	CALC_PEAK	Cal C peak map
Extension N+2	CALD_PEAK	Cal D peak map

 Table 9-5: FITS structure of Periodic Peak Gain map files

9.4.2.1 Primary HDU

The following table lists keywords used in the primary header. Keywords for this primary header include those defined in Sections 4.5.1 and 4.5.2 in addition to those defined in the following table. The data type codes used in the "Type" column are defined in Appendix B.

 Table 9-6: Periodic Peak Gain map Primary Header keywords

Keyword Name	Type	Description	Value/Range
TLM2FITS	А	Version of software that converts the telemetry data to FITS data.	1.2, e.g.

9.4.2.2 GAIN Extension: Header

The GAIN extension defines the following unique keywords in the table below. The data type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
TIME_CAL	D	Mean time of the calibration used to derive this	See section 4.2
		periodic peak gain map (IXPE Time, seconds).	

 Table 9-7: GAIN extension keywords

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 74 of 79

9.4.2.3 GAIN Extension: Table Columns

The table itself is an array of detector X and Y bin ID's, and the SLOPE and OFFSET of the PHA-to-PI linear conversion for that bin. The data occupy 4 columns by 90000 rows. This means that the detector area is divided into a square array of 300x300 bins. Data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
BARX_PX	Ι	None	Barycenter X position in pixels (1-300)
BARY_PY	Ι	None	Barycenter Y position in pixels (1-300).
SLOPE	Е	PI/PHA	Slope of the linear PHA-to-PI model.
OFFSET	Е	PI	Offset of the linear PHA-to-PI model.

Table 9-8: GA	IN Extension	Table Columns
---------------	--------------	---------------

9.4.2.4 CALC_PEAK Extension: Header

The CALC_PEAK extension defines the following unique keywords in the table below. The type codes used in the "Type" column are defined in Appendix B.

Keyword Name	Туре	Description	Value/Range
TIME_CAL	D	Mean time of the calibration used to derive this peak map (IXPE Time, seconds).	See section 4.2

Table 9-9: CALC_PEAK extension keywords

9.4.2.5 CALC_PEAK Extension: Table Columns

The table itself is an array of detector X and Y bin ID's, and the fitted peak PHA of the calibration source for that bin. The data occupy 3 columns by 90000 rows. This means that the detector area is divided into a square array of 300x300 bins. Data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
BARX_PX	Ι	None	Barycenter X position in pixels (1-300)
BARY_PY	Ι	None	Barycenter Y position in pixels (1-300).
PEAK	Е	ADC	Fitted peak ADC value of the calibration source.

 Table 9-10: CALC_PEAK Extension Table Columns

9.4.2.6 CALD_PEAK Extension: Header

The CALD_PEAK extension defines the following unique keywords in the table below. The type codes used in the "Type" column are defined in Appendix B.

Table 9-11:	CALD	PEAK	extension	keywords
		_		

Keyword Name	Туре	Description	Value/Range
TIME_CAL	D	Mean time of the calibration used to derive this peak map (IXPE Time, seconds).	See section 4.2

9.4.2.7 CALD_PEAK Extension: Table Columns

The table itself is an array of detector X and Y bin ID's, and the fitted peak PHA of the calibration source for that bin. The data occupy 3 columns by 90000 rows. This means that the

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 75 of 79

detector area is divided into a square array of 300x300 bins. Data type codes used in the "Type" column are defined in Appendix B.

Name	Туре	Units	Description
BARX_PX	Ι	None	Barycenter X position in pixels (1-300)
BARY_PY	Ι	None	Barycenter Y position in pixels (1-300).
PEAK	E	ADC	Fitted peak ADC value of the calibration source.

Table 9-12: CALD_PEAK Extension Table Columns

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 76 of 79

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 77 of 79

Appendix A: Acronyms and Definitions

A.1 Acronyms

ADC	Analog-to-Digital Converter
ADCS	Attitude Determination and Control Subsystem
APID	Application ID
ARF	Ancillary Response Function
ASI	Agenzia Spaziale Italiana (Italian Space Agency)
BCF	Basic Calibration File
CALDB	(HEASARC) Calibration DataBase
CCSDS	Consultative Committee for Space Data Systems
CDH	Command and Data Handling
CPF	Calibration Product File
DSU	(IXPE) Detectors Service Unit
DU	(IXPE) Detector Unit
ECEF	Earth-Centered, Earth-Fixed (coordinates)
ECMA	European Computer Manufacturers Association
ECI	Earth-Centered Inertial (coordinates)
FCW	(DU) Filter and Calibration Wheel
FITS	Flexible Image Transport System
FSW	Flight Software
GPD	Gas Pixel Detector
GPS	Global Positioning System
GTI	Good Time Interval
HDU	Header Data Unit (FITS file extension)
HEASARC	High-Energy Astrophysics Science Archive Research Center
INAF	Instituto Nazionale di Astrofisica
INFN	Instituto Nazionale di Fisica Nucleare
ISO	International Organization for Standards
ISOT	ISO 8601 Time standard
IXPE	Imaging X-ray Polarimetry Explorer
IXT	IXPE Time
LLA	Latitude, Longitude, and Altitude (coordinates)
MMA	IXPE Mirror Module Assembly
MOC	Mission Operations Center
MP	(SOC) Mission Planning

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 78 of 79

Marshall Space Flight Center
(HEASARC) Office of Guest Investigator Programs
Pulse Height Amplitude
Response Matrix File
Region of Interest (detector sub-image)
South Atlantic Anomaly
Spacecraft
Software Mission Assurance
Science Operations Center
(SOC) Science Processing
(ASI) Space Science Data Center
Terrestrial Time
(IXPE SAT) Topical Working Group
Universal Time Coordinated

IXPE Science Operations Center		
Title: User Guide — Data Formats	Document No.: IXPE-SOC-DOC-007	Revision: D
	Effective Date: 2022-07-22	Page: 79 of 79

Appendix B: Definition of FITS format codes

The table below defines the data type codes used in the description of the FITS file formats in the main sections of this document.

FITS format code	Description	# 8-bit bytes
L	logical (Boolean)	1
Х	bit	*
В	Unsigned byte	1
Ι	16-bit integer	2
J	32-bit integer	4
К	64-bit integer	8
А	character	1
Е	single precision floating point	4
D	double precision floating point	8
С	single precision complex	8
М	double precision complex	16
Р	array descriptor	8
Q	array descriptor	16

Table B-1: FITS keyword format codes

(from https://docs.astropy.org/en/stable/io/fits/usage/table.html)