An overview of the history of X-ray polarimetry and IXPE - the mission and its science

Martin C. Weisskopf
On behalf of the IXPE team

TORINO, April 6, 2017
One does not expect all astrophysical systems to be strongly polarized.

Instruments typically not fully sensitive to polarization

Measured parameter is positive definite – i.e. one always measures something, even in the absence of a polarized source
Rocket history

• 1968 Aerobee 150
 • Sco X-1 upper limit
• 1969 Aerobee 150
 • Crab upper limit
• 1971 Aerobee 350
 • Crab detection!
 • $P = 15\% \pm 5\%$
 • $\varphi = 156^\circ \pm 10^\circ$
• Two instruments
 • Lithium scattering polarimeter
 • 4 Bragg crystal polarimeters
On to the satellite experiment

- 1975 OSO-8 crystal polarimeter
- Precision measurement of integrated Crab Nebula polarization at 2.6 keV
 - $\Pi = 19\% \pm 1\%$
 - $\varphi = 156^\circ \pm 2^\circ$ (NNE) agrees with optical
• Three redundant telescope-detector systems
• Gas pixel electron-tracking detectors developed in Italy
• Replicated X-ray telescopes with <30 arcsecond angular resolution (half-power diameter) developed at MSFC
Participating Institutions & Roles

- NASA/MSFC- PI Team, project management, systems engineering, technical oversight, telescope fabrication, X-ray calibration, science operations, data analysis
- Istituto di Astrofisica e Planetologia Spaziale/Istituto Nazionale di Astrofisica (IAPS/INAF, Rome) & Istituto Nazionale di Fisica Nucleare (INFN, Pisa & Torino) – Polarization-sensitive detectors & electronics, detector calibration & data analysis
- Agenzia Spaziale Italiana (ASI) – Malindi Ground Station
- Ball Aerospace – Spacecraft, Payload Structure, Payload and Observatory I&T
- Laboratory for Astronomy & Space Physics (Boulder) – Mission Operations
- Stanford University & University Roma Tre – Theory
- McGill University & MIT – Co-Chair SWG & Co-Is
Science Team

Martin C. Weisskopf (MSFC) – PI
Luca Baldini (INFN) – Co-I
Ronaldo Bellazzini (INFN,) – Co-I and Italian Co-PI
Enrico Costa (IAPS/INAF) – Senior Co-I
Ronald Elsner (MSFC) –Co-I & Science Systems Eng.
Victoria Kaspi (McGill) – Co-I & SWG Co-Chair
Jeffery Kolodziejczak (MSFC) – Co-I & Calibration Scientist
Luca Latronico (INFN) – Co-I
Herman Marshall (MIT) – Co-I
Giorgio Matt (Univ Roma Tre) – Co-I & Theory
Fabio Muleri (IAPS/INAF) – Co-I
Stephen O’Dell (MSFC) – Co-I & Project Scientist
Brian Ramsey (MSFC) – Co-I, Deputy PI, Payload Scientist
Roger Romani (Stanford) – Co-I & Theory
Paolo Soffita (IAPS/INAF) – Co-I and PI for Italian effort
Allyn Tennant (MSFC) – Co-I & Science Data Ops Lead
The direction of the K-shell photoelectron is determined by the electric vector and the direction of the incoming photon.

\[
\frac{d\sigma}{d\Omega} = f(\zeta) r_0^2 Z^5 \alpha_0^4 \left(\frac{1}{\beta} \right)^{7/2} 4\sqrt{2} \sin^2 \theta \cos^2 \varphi
\]

where \(\beta \equiv \frac{E}{mc^2} = \frac{hv}{mc^2}\)
Electron tracking - 2

- Optical Imaging Chamber
- Austin & Ramsey 1992
Site of initial ionization produced by 54 keV X-ray and the Auger electron cloud

- 2 atm:
 - argon (90%)
 - methane (5%)
 - trimethyamine (5%)
- Track is 14 mm long
The distribution of the photoelectron directions determines the degree of polarization and the position angle.
The polarization sensitive detectors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive area</td>
<td>15 mm × 15 mm</td>
</tr>
<tr>
<td>Fill gas and composition</td>
<td>He/DME (20/80) @ 1 atm</td>
</tr>
<tr>
<td>Detector window</td>
<td>50-µm thick beryllium</td>
</tr>
<tr>
<td>Absorption and drift region depth</td>
<td>10 mm</td>
</tr>
<tr>
<td>GEM (gas electron multiplier)</td>
<td>copper-plated 50-µm liquid-crystal polymer</td>
</tr>
<tr>
<td>GEM hole pitch</td>
<td>50 µm triangular lattice</td>
</tr>
<tr>
<td>Number ASIC readout pixels</td>
<td>300 × 352</td>
</tr>
<tr>
<td>ASIC pixelated anode</td>
<td>Hexagonal @ 50-µm pitch</td>
</tr>
<tr>
<td>Spatial resolution (FWHM)</td>
<td>≤ 123 µm (6.4 arcsec) @ 2 keV</td>
</tr>
<tr>
<td>Energy resolution (FWHM)</td>
<td>0.54 keV @ 2 keV (∝ \sqrt{E})</td>
</tr>
</tbody>
</table>
Measurements of the detector modulation with a 100%-polarized beam at 3.7 keV
Measurements of the detector modulation with an un-polarized beam at 3.7 keV
Modulation factor as a function of energy
Comparison to simulations
The X-ray telescopes

An ART-XC flight module in its support frame (rear view)
The IXPE X-ray mirror modules

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of mirror modules</td>
<td>3</td>
</tr>
<tr>
<td>Number of shells per mirror module</td>
<td>24</td>
</tr>
<tr>
<td>Focal length</td>
<td>4000 mm</td>
</tr>
<tr>
<td>Total shell length</td>
<td>600 mm</td>
</tr>
<tr>
<td>Range of shell diameters</td>
<td>162–272 mm</td>
</tr>
<tr>
<td>Range of shell thicknesses</td>
<td>0.16–0.26 mm</td>
</tr>
<tr>
<td>Shell material</td>
<td>Electroformed nickel–cobalt alloy</td>
</tr>
<tr>
<td>Effective area per mirror module</td>
<td>230 cm² (@ 2.3 keV); >240 cm² (3–6 keV)</td>
</tr>
<tr>
<td>Angular resolution (HPD)</td>
<td>≤ 25 arcsec</td>
</tr>
<tr>
<td>Field of view (detector limited)</td>
<td>12.9 arcmin square</td>
</tr>
</tbody>
</table>
The Energy Response

Modulation factor × square root of the effective area versus energy
End-to-end flow from detected photon to scientific data products

IXPE
Photons to Data Products
Obtain X-ray polarimetric images of an AGN core and jet
Exploit imaging polarimetry to infer past activity of Sgr A*
Map magnetic field of X-ray-emitting regions in Pulsar Wind Nebulae and in shell-type Supernova Remnants
Perform phase-resolved polarimetry of rotation-powered pulsars using imaging to reduce nebular background
Explore Magnetar physics and vacuum birefringence
Obtain energy-resolved polarimetry of AGN and microquasars to test models and assess black-hole spin
Perform phase- and energy-resolved polarimetry of accreting X-ray pulsars to test emission models
Sensitivity

Time to reach a minimum detectable polarization as a function of source flux

![Graph showing time to reach minimum detectable polarization as a function of source flux for different types of sources, including PWNes, SNRs, Magnetars, Classical Accreting Binary Pulsars, LMXBs/AMSPs, Micro-Quasars, Black-hole binaries, Galactic center, Sgr B2, and AGNs. The graph includes data points for different flux levels and shows the minimum detectable polarization (MDP) values for 99% of all sources.]
For a micro-quasar in an accretion-dominated state
Scattering polarizes the thermal disk emission
Polarization rotation is greatest for emission from inner disk
Inner disk is hotter, producing higher energy X-rays
Priors on disk orientation constrain GRX1915+105
model $a = 0.50 \pm 0.04; 0.900 \pm 0.008; 0.99800 \pm 0.00003$ (200-ks)
Active galaxies are powered by supermassive BHs with jets
• Radio polarization implies the magnetic field is aligned with jet
• Different models for electron acceleration predict different dependence in X-rays

Imaging Cen A allows isolating other sources in the field
• Two Ultra Luminous X-ray sources (one to SW on detector but not visible in 6-arcmin-square displayed region)

Includes effects of dilution by unpolarized diffuse emission
Exploit imaging polarimetry to infer past activity of Sgr A*
Fundamental New Measurements - PWNe

- Map the magnetic field of X-ray-emitting regions in Pulsar Wind Nebulae
Emission geometry and processes are unsettled
 - Competing models predict differing polarization behavior with pulse phase

X-rays provide cleaner probe of geometry
 - Absorption likely more prevalent in visible band
 - Radiation process entirely different in radio band
 - Recently discovered no pulse phase-dependent variation in polarization degree and position angle @ 1.4 GHz

140-ks observation gives ample statistics to track polarization degree and position angle
Magnetar is a neutron star with magnetic field up to 10^{15} G
Non-linear QED predicts magnetized-vacuum birefringence
 - Refractive indices of the two polarization modes differ from 1 & each other
 - Impacts polarization and position angle as functions of pulse phase,
Example is the magnetar 1RXS J170849.0-400910, with an 11-s pulse period where we can exclude QED-off at better than 99.9% confidence in 250-ks
- Lines and thermal continuum dominate @ 1-4 keV
- Non-thermal emission dominates @ 4-6 keV

Cas A image at IXPE resolution (1.5-Ms)