The Science Theme motivating the Athena+ mission
Why does the observable universe look the way it does?

Dark Matter structure of the Universe

Springel et al. 2005
Key questions for observational astrophysics in 2028

1. How does ordinary matter assemble into the large scale structures we see today?

Athena+ Deep Field

Extended X-ray sources

Oppenheimer et al. 2009

Pointecouteau, Reiprich et al., 2013 arXiv1306.2319
The formation and evolution of clusters and groups of galaxies

How and when was the energy contained in the hot intra-cluster medium generated?

How does ordinary matter assemble into the large-scale structures that we see today?
The formation and evolution of clusters and groups of galaxies

How and when was the energy contained in the hot intra-cluster medium generated?

Simulated Velocity map

How does ordinary matter assemble into the large-scale structures that we see today?

Athena+ X-IFU 100 ks
A2256 subclump

Ettori, Pratt, et al., 2013 arXiv1306.2322
The chemical evolution of hot baryons

When and how were the largest baryon reservoirs in galaxy clusters chemically enriched?

Ettori, Pratt, et al., 2013 arXiv1306.2322

How does ordinary matter assemble into the large-scale structures that we see today?
The Warm-Hot intergalactic medium (WHIM)

Where are the missing baryons in the local Universe? What is the underlying mechanism determining the distribution of the hot phase of the cosmic web?

Kaastra, Finoguenov et al., 2013 arXiv1306.2324

How does ordinary matter assemble into the large-scale structures that we see today?
Key questions for observational astrophysics in 2028

1. How does ordinary matter assemble into the large scale structures we see today?

2. How do black holes grow and shape the Universe?
Cosmic feedback: the origin of black hole winds

How do black holes launch winds and outflows?
How much energy do they carry out to larger scales?

Cappi, Done et al., 2013 arXiv1306.2330
Dovciak, Matt et al., 2013 arXiv1306.2331

How do black holes grow and shape the Universe?
Cosmic feedback: the impact on galaxy cluster scales

How do jets from Active Galactic Nuclei dissipate their mechanical energy in the hot intracluster medium, and how does this regulate gas cooling and black hole fuelling?

How do black holes grow and shape the Universe?

Croston, Sanders et al., 2013 arXiv:1306.2323
Cosmic feedback: black hole and galaxy co-evolution

How much black hole accretion occurs in the most obscured environments?
How does this relate to the evolution of the host galaxy?

Disk instability

Obscured BH growth

Feedback phase

Quiescent remnant

Merger

Ceverino et al. 2010

Hopkins et al. 2006

Compton thick $z=2$

Blowout phase $z=2$

Georgakakis, Carrera et al., 2013 arXiv1306.2328

How do black holes grow and shape the Universe?
Black hole growth in the early Universe

What was the growth history of black holes in the epoch of reionization?

How do black holes grow and shape the Universe?

Aird, Comastri et al. 2013 arXiv1306.2325
The first stars and black holes

When did the first generation of stars explode to form the first seed black holes and disseminate the first metals in the Universe?

Gamma Ray Burst at $z=7$

How do black holes grow and shape the Universe?

Jonker, O'Brien et al., 2013 arXiv1306.2336
Level 1 Science Requirements

- All results, detections etc. are to be established at the 5 σ level, or equivalent
- A minimum of 10 objects per bin is required, when splitting samples as a function of parameters such as redshift or luminosity
- A minimum of 25 objects is required when attempting to establish a trend within a sample against a given parameter (e.g. luminosity, redshift, mass)
<table>
<thead>
<tr>
<th>Reference</th>
<th>Requirement (science objective)</th>
<th>Quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-SCIOBJ-111</td>
<td>Athena shall find the first building blocks of the dark matter structure filled with hot gas by detecting 25 evolved groups of galaxies at $z>2$ with $M_{500}>5 \times 10^{13} , M_{\odot}$ and determine the gas temperature of a representative sample. At least five groups are expected at $z>2.5$.</td>
<td>25 galaxy groups with gas temperature at $z>2$ to investigate L-T relation.</td>
</tr>
<tr>
<td>First groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-SCIOBJ-112</td>
<td>Athena shall measure how gravitational energy is dissipated into bulk motions and gas turbulence in the galaxy cluster population, by achieving a 5 sigma detection of these quantities.</td>
<td>Kinetic energy dissipated from gravitational assembly in 10 regular & 10 irregular galaxy clusters in the nearby Universe.</td>
</tr>
<tr>
<td>Cluster bulk motions and turbulence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-SCIOBJ-121</td>
<td>Athena shall determine which physical processes dominate the injection of non-gravitational energy into the intra-cluster medium as a function of cosmic epoch by measuring the structural properties (e.g., the entropy profiles) of galaxy groups and clusters. To differentiate between models of feedback and gas accretion, these measurements shall be achieved to the virial radius in local clusters and out to R_{500} up to $z=2$, with an uncertainty <25% (at R_{500} at $z=2$). Athena shall also measure the evolution of the scaling relations between bulk properties of the hot gas (e.g., the L_x-T relation) out to at least a redshift of 2, to a precision of <25%.</td>
<td>Cosmic history of the injection of entropy in cluster hot gas at $0<z<2$. Investigate 10 clusters in each of 4 redshift bins and 3 mass bins (total 120 clusters).</td>
</tr>
<tr>
<td>Cluster entropy profile evolution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Hot Universe
- R-SCIOBJ-111 - First groups
- R-SCIOBJ-112 - Cluster bulk motions and turbulence
- R-SCIOBJ-121 - Cluster entropy profile evolution
- R-SCIOBJ-122 - Cluster chemical evolution
- R-SCIOBJ-131 - Physics of cluster feedback
- R-SCIOBJ-132 - Feedback-induced cluster ripples
- R-SCIOBJ-133 - Heating/cooling balance in cluster feedback
- R-SCIOBJ-134 - Shock speeds of radio lobes in clusters
- R-SCIOBJ-141 - Missing Baryons
- R-SCIOBJ-142 - WHIM in emission

The Energetic Universe
- R-SCIOBJ-211 - High redshift SMBH
- R-SCIOBJ-221 - Complete AGN census
- R-SCIOBJ-222 - Census of AGN outflows at z=1-4
- R-SCIOBJ-223 - Mechanical energy of AGN outflows at z=1-3
- R-SCIOBJ-224 - Ultra-fast outflows at z=1-4
- R-SCIOBJ-231 - AGN outflows in local Universe
- R-SCIOBJ-232 - Feedback in local AGN and star forming galaxies
- R-SCIOBJ-241 - AGN reverberation mapping
- R-SCIOBJ-242 - AGN spin census
- R-SCIOBJ-251 - GBH and NS spins and winds
- R-SCIOBJ-252 - ULXs and SgrA*
- R-SCIOBJ-261 - High z GRBs
- R-SCIOBJ-262 - TDEs
A Personal Observation

Athena has a 12m Focal Length
The current XRS straw-man design has a similar 10m fl

We should consider variations!

5m: Increased FOV, at the cost of high-energy response. Will make XRS into more of a ‘survey’ instrument, especially at high-z. Reduced focus on Galactic Fe K science. Would place more constraints on wide-field detector technology.

20m: substantially improved 5-10 keV response, smaller FOV. Focus on Galactic and low-z Fe K band. Fewer requirements on detector
Athena+
The first Deep Universe X-ray Observatory

High redshift galaxy group

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Normalised Counts/s/keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>10^0</td>
</tr>
<tr>
<td>1</td>
<td>10^0</td>
</tr>
<tr>
<td>1.5</td>
<td>10^0</td>
</tr>
</tbody>
</table>

Black hole feedback at peak of activity in Universe

Obscured black hole in the early Universe

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Normalised Counts/s/keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>10^-5</td>
</tr>
<tr>
<td>0.68</td>
<td>10^-5</td>
</tr>
<tr>
<td>0.69</td>
<td>10^-5</td>
</tr>
<tr>
<td>0.70</td>
<td>10^-5</td>
</tr>
</tbody>
</table>

Primordial stellar populations via GRB afterglow follow up

Nandra, Barret, Barcons, Fabian, den Herder, Piro, Watson et al. 2013 arXiv 1306.2307

Athena+ Deep Field
The Athena+ Observatory

L2 orbit Ariane V
Mass < 5100 kg
Power 2500 W
5 year mission

X-ray Integral Field Unit:
\(\Delta E: 2.5 \text{ eV}\)
Field of View: 5 arcmin
Operating temp: 50 mk

Wide Field Imager:
\(\Delta E: 125 \text{ eV}\)
Field of View: 40 arcmin
High countrate capability

Silicon Pore Optics:
2 m\(^2\) at 1 keV
5 arcsec HEW
Focal length: 12 m
Sensitivity: \(3 \times 10^{-17} \text{ erg cm}^{-2} \text{ s}^{-1}\)

Barret et al., 2013 arXiv:1308.6784
Rau et al. 2013 arXiv1307.1709
Willingale et al, 2013 arXiv1308.6785
Technical Maturity

Simplified:
5 to 2 instruments
Extendible to fixed OB

Enhanced:
Angular resolution now 5"
Fields of view increase x 4
Effective area increase x 4 (per instrument)
ATHENA+

The first Deep Universe X-ray Observatory

Athena+ has vastly improved capabilities compared to current or planned facilities, and will provide *transformational* science on virtually all areas of astrophysics.

- **X-ray spectroscopy at the peak of the activity of the Universe**
- **Deep survey capability into the dark ages and epoch of reionization**

![Line Sensitivity](image1)

![Survey Speed](image2)
Outflow in X-ray binary, 10ks

Athena+: a powerful observatory

Planets
(interaction of solar wind with planet environment and comets)

Exoplanets

Stellar physics

Supernovae
(explosion mechanism, heavy element production)

Stellar endpoints
(physics of outflows and winds in X-ray binaries)

Sgr A*

Interstellar dust and medium

Athena+ is a crucial part of the suite of large observatories needed to reach the science objectives of astronomy in the coming decades.
Acknowledgements

The Athena+ Co-ordination Group: Xavier Barcons (ES), Didier Barret (FR), Andy Fabian (UK). Jan-Willem den Herder (NL), Kepa Nandra (DE), Luigi Piro (IT), Mike Watson (UK)

The Athena+ Working Groups: Christophe Adami (FR), James Aird (UK), Jose Manuel Alfonso (PT), Dave Alexander (UK), Costanza Arigiofi (IT), Monique Arnaud (FR), Jean-Luc Afra (IT), Marc Audard (CH), Carles Badenes (US), Jean Balley (FR), Lucio Balto (IT), Ayo Bambra (DP), Anil Bhardwaj (IN), Bob Stefanos Battelio (IT), Werner Becker (DE), Michael De Becker (BE), Ethel Behr (IS), Stefano Bianchi (LT), Veronica Biffi (IT), Laura Birzan (NL), Fabrizio Bocchino (IT), Stavros Bogdanos (US), Lawrence Botin (FR), Thomas Bolton (DE), Stefano Borsani (IT), Katharina Born (DE), Henri Bourdin (IT), Richard Bower (UK). Valentina Brato (IT), Enrico Brancini (IT), Grazia Branduardi-Raymont (UK), Joel Bregman (USA), Laura Brennan (USA), Murray Brightman (DE), Marcus Brüggen (DE), Johannes Buchner (DE), Era Bukulja (USA), Marcela Brusa (IT), Michal Bursa (CZ), Alessandro Cosciangina (IT), Ed Cockeht (USA), Sergio Compagnoni (IT), NicoCompagnoni (IT), Massimo Cornu (IT), Francisco Carrera (ES), Maite Cesallos (ES), Finn Christensen (DK), Yu-Hao Chu (US), Eugene Churazov (DE), Nicola Clerc (DE), Stefano Combet (FR), Attilio Corral (GR), Andrea Comastri (IT), Elsa Costantini (NL), Judith Croston (FR), Mauro Dadone (IT), Antonino D’A (IT), Anna Deo-Capella (FR), Roberto della Casa (IT), Konrad Dellis (DE), Klaus Dolag (DE), Chris Done (UK), Michal Dovciak (CZ), Jeremy Drake (US), Dominique Ecker (S), Ataatar Edge (UK), Stefano Ettori (IT), Yukihiro Eto (JP), Eric Feigelson (US), Rob Fender (UK), Chiara Feagio (FR), Alexsio Finoguenov (IT), Fabio Fiore (IT), Massimiliano Fossati (IT), Sarah Gallagher (CA), Pashak Gandi (UK), Massimo Grassai (IT), Fabio Gastaldello (IT), Antonis Georgokakos (DE), Ioannis Georganopoulos (GR), Mared Giffon (DE), Myrta Gill (IT), Randy Gladstone (USA), Rene Goossens (FR), Eric Gossel (BE), Nicolas Graasa (FR), Manol Guedes (AT), Marlan Guerra (ES), Frank Haberl (DE), Martin Hardcastle (UK), Sebastian Hentsch (ES), Anthony Hercott (FR), Mabs Holmes (SE), Kazushi Iwasawa (ES), Peter Jonker (NL), Jelle Keastra (NL), Erin Kara (UK), Vladimir Karas (CZ), Joel Kastner (US), Andrew King (UK), Dario Konesko (FR), Dimitra Koutouloumpa (GR), Ralph Kraft (US), Ingo Kreykenbohm (DE), Roland Lietskens (FR), J. Lee (US), Mauro Lemaire-Gourmatat (FR), Andrew Lobban (UK), Giuseppe Lodato (IT), Lorenzo Lobb (DE), Ian McCarthy (UK), Brian McNamara (CA), Antonio Maggio (IT), Roberto Maiolino (UK), Barbara De Marco (DE), Silvia Matteo (ES), Giorgio Matt (IT), Ben Maughan (UK), Pasquale Matta (IT), Mariano Medrano (NL), Andrea Menniti (DE), Giuseppe Messa (IT), Marco Messa (IT), Robert Migliori (IT), Jon Miller (US), Giovanni Minutiti (ES), Silvano Molendini (IT), Raffaele Monte (ES), Alberto Mottet (IT), Christian Mouchet (FR), Vaiti Naze (BE), Jukka Nevalainen (FI), Fabrizio Nastro (IT), Paul Nutt (IN), Takuya Okuda (JP), Paul O’Brien (UK), Julian Osborne (UK), Lido Oskavova (DE), Florian Pacaud (DE), Frederic Parston (UK), Mal Pago (UK), Isold Papadakis (GR), Giovanni Parsecchi (IT), Robert Perret (FR), Pierre-Olivier Petrucci (FR), Enrico Pinconcelli (IT), Ignazio Pilleri (IT), C. Pinto (UK), Jelle de Plaas (NL), Etienne Pointecouteau (FR), Trevor Ponman (UK), Gabriele Ponzoni (IT), Gabriel Pratt (IT), Peter Predehl (DE), Daniel Proga (US), Dimitris Pslis (US), David Rafferty (NL), Eelam Rambas-Cega (DE), Piero Ramun (IT), Elena Rasla (US), Anne Rau (DE), Gregor Raw (BE), Nando Rea (IT), Andy Reid (UK), James Reeves (UK), Thomas Reiprich (DE), Staffan Renfrew (FR), Chris Reynolds (US), Guido Risalati (IT), Jerome Rodriguez (FR), Todd Rodriguez-Hidalgo (CA), Mauro Roccati (IT), David Rosado (DE), Mauciaarea Rosselli (IT), Agata Rozanska (PL), Emmanouil Rovikas (UK), Ruben Salvatora (IT), Mara Salvato (DE), Tatiana Salvi (CA), Jeremy Sanders (DE), Jorge Sara (Franceda (ES), Kevin Schawinski (CH), Joop Schaye (NL), Salvatore Sciortino (IT), Paolo Sevaretti (IT), Francesco Shankar (FR), Stuart Sim (FR), Christian Schmid (DE), Randall Smith (US), Andrew Steiner (US), Beate Steier (IT), Gordon Stewart (UK), Tod Stromayer (US), Lohar Struder (DE), MING Sun (US), Yan Take (JP), Andrea Teng (IT), Francesco Tombesi (US), Ginevra Tornielli (IT), Kai U. D. Olsuf (US), Eugenio Urra (NL), Lynne Valenzani (US), Erro Varziello (IT), Simon Vaughan (UK), Cristian Vignali (IT), Jacco Vink (NL), Fabio Vito (IT), Marta Valverde (FR), Daniel Wang (US), Natalie Webb (FR), Richard Willingale (UK), Joakim Wills (DE), Michael Wise (NL), Diana Worrall (UK), Andrew Young (UK), Luca Zampieri (IT), Jean-Paul Zand (NL), Andreas Zuerer (GR), Miyaw Si-Da (US), Khoa Zvirnevits (US)

Athena+ Working Groups

(~250 people)

Athena+ supporters

(~1200 astronomers)

Special thanks to the review team:

More information, white paper, 15 supporting papers at:
http://the-athena-x-ray-observatory.eu/
How do black holes grow and influence the Universe?

How does ordinary matter assemble into the large scale structures we see today?

The Hot and Energetic Universe