

Lessons We Learned Designing and Building the Chandra Telescope

Jonathan Arenberg and Gary Matthews

&

C. Atkinson, L. Cohen, C. Golisano, K. Havey,
K. Hefner, C. Jones, J. Kegley, P. Knollenberg, T. Lavoie,
J. Oliver, P. Plucinsky, H. Tananbaum,
S. Texter and M.C. Weisskopf

Overview of Talk

- Overview of main lessons learned
- A <u>very</u> brief historical overview
- Some of our lessons learned
- Summary

- Build a solid team—face to face, keep that team together throughout the program.
- Understand the details---there is no such thing as a "simple" interface or material property, requirements too!
- Understand the risks and attack the big ones as early as possible.
- Practice all challenging or new processes, procedures, facilities and teams off the critical path
- Test completely as early and completely as possible, after all "An ounce of prevention is worth a pound of cure."

Chandra's Anatomy

Team

- Most key positions were held by the same people over the course of the entire program
- VETA-I veterans formed the core of the team
- After program reformulation, the team emerged truly badgeless with the single goal of executing the science driven design
 - − ~1,000 cm² of collecting area
 - 0.5 arcsec imagery

Details: Moisture in the Glue

- The mirrors are supported by invar pads that are epoxied to the outside diameter of the mirror.
- Test and analysis of the epoxy showed that over seasonal humidity cycles the strain in the adhesive markedly changed.
- Requirement to control humidity to be dry during the bonding operation.
- This dry condition assured us of proper on orbit performance
- A method also had to be found to remove excess water from the epoxy's resin component,
 - A molecular sieve was identified
 - Absorbs water and only water from the neat epoxy resin
- Lesson is to make sure to know how material properties can affect performance, no matter how small the property change is

Dealing with Risk: Tale of Two VETAs

- Verification Engineering Test Article-I (VETA-I) addressed the major risk on the programmirror development
 - Provided early check out of XRCF, x-ray calibration procedures and facility interfaces
- The VETA-I experience allowed the argument for rehearsals for flight calibration
 - Not in baseline plan for program
 - Rehearsals enabled a successful calibration yielding better scientific return 12

VETA-II Simulated the HRMA

- VETA-II added to program as risk reduction activity
- VETA-II mounted P1/H1 to the flight tolerances using the flight handling hardware and alignment metrology
 - Hundreds of lessons learned resulted from VETA-II
 - Affecting handling procedures, support equipment, metrology hardware, and alignment and metrology processes

- Lessons learned from VETA-II enabled the installation of the flight mirrors to complete 1 month ahead of schedule
- VETA-II was always "on the chopping block" to save budget in tight moments

Practice Makes Perfect

- VETA-I test efficiency was about 1-3%
 - Necessary flight calibration was not feasible in the allotted time
- A series of rehearsal tests, were conducted, form May 1996 to late
 November 1996
- Could entire new test procedure from the science database of requested measurements in 30 minutes
 - React to what was being learned in near real-time
- Final average efficiency for x-ray calibration was 48.8% for all test phases
 - The efficiency for the non-flight detector, HXDS, was significantly lower than for calibration with the flight detectors.
 - Lesson rehearsals pay off, but we would have even better served with more attention to requirements on data collection speed

Test Completely

- The ground support equipment for use at XRCF did not get tested in a vacuum
 - Cost and schedule
- The GSE was designed well and checked out in Rochester and appeared to be working as designed
 - Vacuum testing at XRCF after integration of the flight hardware surfaced issues
- Early vacuum testing would have identified problems and corrected them off the critical path of the program, which was x-ray calibration
- Early system debugging would have identified these issues and they would have been solved off the critical path

- Build a solid team—face to face, keep that team together throughout the program
- Understand the details---there is no such thing as a "simple" interface or material property, requirements too!
- Understand the risks and attack the big ones as early as possible
- Practice all challenging or new processes,
 procedures, facilities and teams off the critical path
- Test completely as early and completely as possible, after all "An ounce of prevention is worth a pound of cure."