

Lynx Mission Concept Overview

Lynx Industry Day

MSFC Advanced Concepts Office May 22, 2017

What is the Lynx Mission?

Similar to Chandra, Lynx will observe X-ray sources throughout the cosmos and help scientists learn about the processes that govern stellar and cosmic evolution.

Mission Description Launch 2030 Orbit Several Options to be Evaluated Duration 5 years (20 years consumables)

Configuration – 2015 Study

Configuration – 2015 Study

Internal Configuration – 2015 Study

Internal Configuration – 2015 Study

Bus Configuration – 2015 Study

Custom spacecraft bus

- COTS mono-prop propellant propulsion system
- COTS Reaction wheels and isolation system
- High-TRL mechanisms
- High-TRL communications system
- High-TRL command and data handling system

Bus Configuration – 2015 Study

Launch Configuration – 2015 Study

5m Launch Shroud

- Several launch vehicle options under consideration
- Custom payload adapter may be necessary

Lynx Spacecraft Interface Diagram

Starting Assumptions

1.0	Property	Value						
	Mission	X-Ray Telescope						
	Orbit	Study Output						
	Mission Duration	Five years, with 20 years of consumables						
	Maximum Time from Launch to Full Capability	Assume 90 min						
Conoral CD9 A	Risk Class	Class B						
General GR&A	Servicing interval	Assume no servicing						
	Fault Tolerance	Single Fault						
	Configuration	'Similar' to Chandra						
	Instrument Location	Study Output						
	Payload Envelope	Tied to launch vehicle						
	Mass allocation	Study Output						

Starting and Assumptions

2.0	Property	Value						
Mission Analysis GR&A	Orbit	SE-L2 halo (JWST-like), TESS type orbit, LDRO.						
	Maximum eclipse period	If SE-L2 is chosen, will use value from LUVOIR/JWST; for TES or LDRO, will calculate.						
	Delta-V Margin	10% on deterministic maneuvers; 25% on all others						
	End-of-life disposal	Will perform maneuvers to meet NASA standards for limiting of orbital debris as necessary. Will include maneuver to for observatory into safe disposal at end of mission.						
	Risk of Human Casualty/EOL Disposal	If atmospheric reentry is required for EOL disposal, we will assume that a controlled reentry is required. No analysis is needed.						
	Ground station contact times	Will be determined using STK.						
	Orbit Lifetime	20 years						

FY16-17 Lynx Concept Study Plans

Task		FY16		FY17											
		Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
Study Schedule															
Non-Payload Specific Trade Studies															
Spacecraft Concept Definition															
Instrument Concept Design												:			
Concept Trades														-	