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Options for the Lynx X-ray
microcalorimeter “Whiskers”

Lynx Technical Interface Meeting
Huntsville, May 224, 2017

Simon Bandler — X-ray microcalorimeter group at NASA/GSFC

* Microcalorimeter overview

e Preliminary system design

e Tall poles

 Examples of possible CAN development areas.



Suggested Lynx microcalorimeter requirements
for initial study

* Pixel size: 1”
* Field-of-View: At least 5’ x 5’
* Energy resolution [FWHM]: <5 eV

* Count rate capability: < 1 count per second per pixel

* For a focal length of optic of 10 m, 1” corresponds
to 50 um pixels

5’ field-of-view with 1” pixels requires a nominal
300 x 300 array => 90,000 pixels



Transition-edge Sensor microcalorimeter basics:
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Lynx requires pixels on small pitch
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“Small-pixel” TES microcalorimeter
design : on solid substrate




Current (pA)

Multi Absorber TES “Hydras” - 1 TES, 4 absorbers

— increase field of view for a fixed number of read-out channels
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Main array
1” pixels, 5" FOV
~ 3 eV, 20 cps/hydra (5”)
up to 7 keV (higher energy range
in different operating mode).

Enhancement option 1(a):
High-res inner array
0.5” pixels, 1’ FOV
~ 1.5 eV, 20 cps/hydra-25 (2.5”)
up to 7 keV
48% harder to read-out

Enhancement option 1(b):
High-res inner array

- 0.5” pixels, 1’ FOV

- ~2eV,50cps/hydra-4 (1”)

- upto7keV(?)

- many times harder to read-out

Enhancement option 2:

High res. array
1” pixels, 30” FOV
0.3-0.4 eV (up to ~ 0.75 keV)
Non-linear signal analysis will
determine energy resolution up
to 2 keV
Count rate ~ 75 cps/1”
25% harder to read-out




Dewar Dewar Focusing Baffle

Schematic of focal plane layout: Flectronics Motors
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Lynx Block Diagram:
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Typical X-ray Microcalorimeter Instrumentation

X-ray u-calorimeter array
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What are the tallest poles for making larger microcalorimeter
instruments such as are desired for Lynx?

1. Development and fabrication of read-out
- Large number of TESs to read out within the system constraints

2. Fabrication of arrays
- Complexity of fabricating arrays with sufficient number of pixels, good enough energy
resolution, small enough pitch, sufficient heat-sinking, and reliable wiring to amplifiers.

3. Cryogenics
- Accommodating heat loads from low temp. read-out & wiring — SQUIDs and HEMTs.

4. Hydra design

- Discrimination between pixels of X-ray events Hydras down to very low energies.
5. High throughput filters

- Many X-rays < 1 keV, where IR blocking filter transmission affected by filters.
5. Ease of calibration.

6. Adequate high-yield contacts
- Bump bonding between detector chip & low-temperature read-out.

7. Flight qualified room temperature electronics
- Power load/cost from large number of electronics channels - ASICs

8. Complexity of FPA design, and integration of GHz technologies.
- Flex designs, coax designs, packaging, connectors



Possible Lynx CAN topics:

* Cryostats & Cryocoolers

* Adiabatic demagnetization refrigerators

* Technology for efficient IR/optical/UV blocking filters with
maximum soft (E ~ 0.2 keV) X-ray transmission

* Low-noise, low-power High Electron Mobility Transistors

* Parametric amplifiers

* Multi-channel GHz cabling and packaging

e Application-specific integrated circuits (ASICs)



Cryostats & Cryocoolers

* Cryostats need to minimize of mass/power/cost & have high
reliability.

- Feasibility of putting gratings detector as close to on-axis “

as possible. | q ‘._‘) .,

- Could the edge of gratings read-out be ~ 42 cm from centralflf =——| BT~
& ol .

optical axis? B {‘; L %

* Cryocoolers:

- How much redundancy is required?

- How much does redundancy add to reliability?

- If more than one, how many required in to continue
operation if one fails?

- Cooling power likely needed ~ 10-40 mW at ~ 4K (TBR)

Adiabatic Demagnetization Refrigerators - ADR’s

e Continuous ADRs needed capable of ~5 uW of cooling
at 50 mK, with next heat-sink at 300 mK-2K.

=> 2.5 uW available of cooling power at 50 mK

+

|




IR/UV/Optical blocking Filters — would like much better than Astro-H!

Astro-H SXS Dewar optical blocking filters

CTS filter DA Lid filter



Si filter mesh filters needed
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Need to try to develop thinner filters to increase soft-band
X-ray transmission

Astro-H SXS:

— 5filters, 385 Al / 488 poly, 3 Si meshes
XQC Sounding Rocket:

— 6 filters, 120 Al / 270 poly, 4 meshes

Athena XIFU (baseline):
— 5filters, 150 Al / 225 poly, 5 meshes

Lynx?
— Large diameter — arrays could be 6 cm x 6 cm!

— Each filter ~10nm Al / 20 nm poly. Limited by ~few nm-thick oxide on filters; challenge
fabrication experts to inhibit oxidation so we can use thinner Al.

— 5 or more filters, 50nm Al / 100 nm poly
— Use Al meshes ?

— Waveguide Cutoff Filters
* 3-to-1 ratio explored at GSFC
* J5-to-1 ratio explored at U Wisconsin
* Easier for low T, but 300K radiation is difficult

* Low-Temperature FW with baffling?
— At 1-4K stage, use stepper motor with superconducting leads

— Would need >15cm diameter clearance for FW, since filter diameter would need to be ~6 cm
diameter



Read-out - Microwave (GHz) SQUID Resonators
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RF flex circuit cabling for Lynx

Goal: High-density, low-loss, low thermal

conductivity RF lines

Superconducting flex circuits offer path to
density and thermal requirements

High-frequency connectorized transmission flex

Goal: Flexible 4-8 GHz
transmission lines that connects
50 mK TES to 2-4 K HEMTs
Typically use semi-rigid
miniature superconducting coax
cables with SMA connectors =
limits number of read-out

channels
Must limit heat inflow into the

50 mK detector to a few
microwatts

Rev. Sci. Inst. 83, 086105 (2012)

Heat load per conductor (nW)

4Kto.6K | 2Kto.6K [ .6Kto.05K

Technology
.085 NbTi coax 7600
.047 NbTi coax 2100
PhBr microstrip 630
SnPb-plated PhBr <6000
microstrip

NbTi microstrip
Ti6Al4V microstrip

270
150
<500

8.5
15
<30



RF connectorization

* Low temperature operation needed

* High density needed

* Rugged

* Integrated with multiple coaxial wwires/flex
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HEMTs for Lynx 1 ——— .
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Commercial HEMTSs sufficient for many ; \\ / ;
applications : S~ —_/ :
Example: Low Noise Factory HEMT s S S
* Compact (25 x 21 x 3.5 mm) and Frequency [GHz]
stackable

* Noise temperature < 2 K

40 dB gain over 4-8 GHz

* 4 mW power dissipation

* 3stagesat4K

e Can make lower power HEMTs?

« Different stages at different temps?

Packages is multiple HEMTs desirable

* Example of 4 K module with multiple
HEMTs shown right.

* Very low power Parametric Amplifiers
suitable for typical microwave SQUID
powers also an option.




Virtex-5Q
(VSX240T)
Virtex-5Q
(VSX240T)
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