Pushing XRS to Higher Energies: Science and Potential Implementation

Daniel Stern

NuSTAR Project Scientist JPL/Caltech

NuSTAR

(Nuclear Spectroscopic Telescope Array)
NASA Small Explorer (SMEX)
Launch date: 2012 June 13

3-79 keV

12' x 12' FoV

as of Nov 1, 288 refereed papers submittted

Resolving the Peak of the Cosmic X-Ray Background

cosmic X-ray background:

- >80% resolved below 8 keV
- NuSTAR resolves ~35% at 8-24 keV

XRS could resolve most of the CXB at its peak!

heavily obscured sources

Resolving the Peak of the Cosmic X-Ray Background

- NuSTAR only seeing L*
 AGN out to z~1.5, so
 not seeing typical AGN
 at the peak of the
 quasar era
- most distant NuSTAR
 8-24 keV survey
 sources at z~3

Black Hole Physics

- improved black hole spin measurements
- improved understanding of the corona

Black Hole Physics: Nature of the Corona

- base of the jet? atmosphere of the inner accretion disk?
- cut-off temperatures combined with sizes (e.g., from reverberation mapping) show coronae to be hot and compact, but based on just 16 sources with cut-off temperatures measured/constrained to date (and not all with size measurements)

Black Hole Physics: Spin Measurements

- improved measurement of continuum straddling Fe Kα
- model degeneracies broken by relativistic blurring of Compton reflection hump

Black Hole Physics: Reverberation Mapping

- time domain data allows dissection of various spectral components and derivation of their spatial separations (key to observe reflection hump)
- many NuSTAR observations consistent with the "lamppost model", where corona is compact region along axis of the black hole

Black Hole Physics: Outflows

• NuSTAR sensitivity above 10 keV crucial for modeling P-Cygni Fe profiles for PDS456, allowing measurement of wind opening angle and energetics

Black Hole Physics: Intrinsically Weak Coronae?

- NuSTAR has identified several (BAL) AGN (e.g., Mrk 231) which are very faint in the X-rays, even out to high energies:
 - obscuration hiding the X-ray emission?
 - intrinsically weak / quenched coronae?

Obscured AGN

 NuSTAR has found, with scant statistics, evidence for an inverse correlation between AGN luminosity and torus covering factor

Supernova Remnants

• Ti⁴⁴ is an ideal tracer of supernova explosion, since it is a radioactive line associated with material created close to the "fallback region" in the explosion

Supernova Remnants

- how do stars explode?
 - clumpy distribution of radioactive titanium in Cassiopeia A indicates that the expected stall in the supernova explosion is broken by a "sloshing" instability

Diffuse Hard X-ray Emission at Galactic Center

Galactic and Nearby Galaxy Surveys

• compact remnants in the Milky Way and nearby galaxies (as a function of age, metallicity, etc...)

Ultraluminous X-Ray Sources (ULXs)

 ULXs have unique spectra above ~8 keV, indicative of distinct (super-Eddington?) accretion modes

Ultraluminous X-Ray Sources (ULXs)

Bachetti et al. 2014, Nature, 514, 202 Israel et al., arXiv:1609.06538 Fuerst et al, arXiv:1609.07129 Israel et al., arXiv:1609.07375

Dark Matter

Science Summary, Selected Sample

Science	Key Energy Range
cosmic X-ray background	20-40 keV
black hole coronae	to at least ~100 keV
relativistic reflection	to ~40 keV
outflows	to ~20 keV
obscured AGN	to ~40 keV
supernova remnants (Ti ⁴⁴)	to ~85 keV
ULXs	to ~20 keV
dark matter	to ~40 keV
galaxy clusters	to ~20 keV
blazars / jets	to at least ~100 keV

Implementation

- separate high-energy telescope(s)?
- dedicate inner shells of the optics to highest energy photons?
 - hybrid detector, with lower-energy sensitive Si CCDs sitting atop higher-energy sensitive Cd(Zn)Te detectors (ala NuSTAR)?

My Assessment

- Lots of very exciting science if we go past 10 keV. In particular, since only comparison is a SMEX, we can counter fears that XRS only provides incremental science gains.
- There's a range of science gains for different energy range enhancements. Even just going to 20 keV buys some science, reaching 40 keV buys even more, etc....
- Much of the enhanced science doesn't require the exquisite optical quality of XRS at lower energies.
- On the flip side, I see the most likely path to the selection of XRS is that we come in significantly cheaper than the other Flagships, so we want to stay simple.

HEX-P

- the High-Energy X-ray Probe (HEX-P), a probe-class NuSTAR follow-on under development for the current mission concept study call
- contact me (and/or Fiona Harrison) if you're interested