

Toward Fast, Low-noise, Low-Power CCDs for Lynx & Other High-Energy Missions

Mark Bautz for

R. Foster, B. LaMarr, A. Malonis, G. Prigozhin, E. Miller, C. Grant, MIT Kavli Institute for Astrophysics & Space Research

B. Burke, M. Cooper, D. Craig, C. Leitz, D. Schuette, and V. Suntharalingam MIT Lincoln Laboratory

Acknowledgements

We gratefully acknowledge support for this work from NASA's Astrophysics Division via APRA and SAT grants to MIT.

The MIT Lincoln Laboratory Digital CCD effort has been supported by the Department of the Air Force.

Overview

- Why consider CCDs for Lynx?
- Advances in CCD technology at MIT Lincoln Laboratory
- Recent measurements of CCD performance
- Challenges for Lynx detectors
 - Small, tall pixels
 - Radiation tolerance
- Next Steps

Lynx Configuration

Lynx HDXI Requirements

Parameter	Requirement	Remarks		
Primary Science Requirements:				
Energy Range	0.3 – 10 keV	Low energies critical for prime high-z & low kT science		
Field of View	22 x 22 arc-minutes	PSF < 1" HPD over 10' radius field		
Spatial Resolution	Pixels size 0.33 arc-seconds	\leq 16 μ m (Lynx focal length = 10m)		
Spectral Resolution	60 eV FWHM @ 1 keV			
Derived Requirements:				
Read noise	≤ 4 electrons RMS	Driven by low-E detection efficiency requirement		
Count rate capability	8000 ct s ⁻¹	Full field		
Frame Rate	100 frame s ⁻¹ full field 10 ⁴ windows s ⁻¹ (~7" x 7" window)			

What's so hard about the HDXI focal plane?

Fast readout + low power mainly drives sensor electronics

Chandra ACIS-I focal plane:

- $2k \times 2k$, $24 \mu m$ pixels
- 45 μm depletion (BI) ٠
- 2-3 e⁻ read noise
- 0.3 frames s⁻¹ ٠
- 40 W; 30 µJ pixel⁻¹

TESS focal plane (1 of 4):

- 4k x 4k, 15 μm pixels
- 100 µm depletion (BI)
- < 10* e⁻ read noise •
- 0.6 frames s⁻¹ ٠
- < 6W; 0.6 µJ pixel⁻¹

Lynx HDXI focal plane:

- $4k \times 4k$, $16 \mu m$ pixels •
- 100 μm depletion (BI) •
- $\leq 4 e^{-}$ read noise
- 100 frames s⁻¹
- ≲50 W; 0.03 μJ pixel⁻¹

Why CCDs for Lynx

CCDs:

- Are well-understood
- Have very low noise & excellent uniformity
- Benefit from continuing development
- Challenges for conventional CCDs for Lynx:
- Readout speed
- CMOS compatibility & power consumption
- Radiation tolerance

Faster, quieter CCD Amplifiers

nMOSFET

Chandra/Suzaku

- Low noise
- < 1 MHz

pJFET (with 2nd-stage nMOSFET)

Current (this talk)

- Low noise
- 1.25 5 MHz

In development. Goals:

SiSeRO pMOS

Credit: MIT Lincoln Lab.

- Sub-electron noise
- 5 MHz
- Non-destructive read

MUT KAYL CMOS Compatible Charge Transfer

- Single-level polysilicon process + deep submicron lithography
- Provides efficient charge transfer with CMOS compatible clocks swings (±1.5 V)
- Reduces power required for clocking ($P \sim CV^2 f$) by more than 10x

- 512 x 512, 8 µm pixels
- pJFET amplifier (1-5 MHz) & (low-speed) SiSeRO
- Single-poly, CMOScompatible clocks
- Front-illuminated, ~70 μm depletion

DCCD Test Results

Parameter	Value	Remarks	
Operating conditions:			
Pixel rate	1.25 - 5 MHz		
Clock levels (parallel & serial)	-1.5 V to +3 V (typical)	± 1.5 V is minimum swing	
	-1.5 V to $+1.5$ V (CTI measurements)	allowed by lab electronics	
Detector temperature	-49° C		
Measured performance with pJFET amplifier:			
Responsivity	$21 \ \mu V$ per electron		
System read noise	6.5 - 7.2 electrons RMS @ $2.5~\mathrm{MHz}$	Includes lab electronics noise of	Read noise:
	10 electrons RMS @ 5 MHz	3.3 electrons RMS	
Inferred pJFET read noise	5.5 - 6.4 electrons RMS @ 2.5 MHz	Excluding lab electronics noise	5.5 – 6.4 e
	9.4 electrons RMS @ 5 MHz		
Spectral Resolution	148 - 151 eV FWHM @ 5.9 keV	single-pixel events	
Charge Transfer Inefficiency	Parallel: $(3.0 \pm 1.0) \times 10^{-6}$ per transfer	@ 5.9 keV; 90% confidence	
	Serial: $< 0.8 \times 10^{-6}$ per transfer		
Dark aurront	2.0 electrons per nivel per second	0 40 °C	

Noise Comparison

Small-But-Tall Pixel Effects

- Similar to HDXI, our test device has relatively small (8 μm) but 'tall' (70 μm) pixels
- Charge packets are spread amongst multiple pixels by diffusion
- Consequences for spectroscopy:
 - Multi-pixel events get extra read noise
 - Some charge is lost even from from 'single-pixel' events
 - Leads to noise-dependent broadening & 'tail'

Small-but-Tall Pixel Effects

- Lynx HDXI requires small (16 x 16 μm) but tall (~100 μm) pixels too.
- This will affect both soft X-ray QE as well as spectral resolution.
- May drive noise requirements below present estimates.

See Eric Miller+ Poster 10699-205 THURSDAY!

Radiation Tolerance

- Fast HDXI transfer rates affect CCD radiation tolerance. Only traps with: 0.1 μs < t_{trap} < 0.5 ms matter for HDXI
- Demonstrated hardening techniques (charge injection, buried channel trough) → satisfactory radiation tolerance for Lynx
- For worst case detector format: Gain spread of order 10⁻³ yr⁻¹ FWHM change of order 10⁻² yr⁻¹
- We will test these projections!

Next Steps

- Characterize low-speed, high-responsivity SiSeRO amplifier
- Complete fabrication of 2nd generation DCCD test device (shown)

• Features:

- Back-illumination
- Frame-transfer architecture
- pJFET and fast SiSeRO amplifiers
- Radiation hardening ('trough' and charge injection)
- Characterize low-energy response and radiation tolerance

Summary

- MIT Lincoln DCCDs at 2.5 MHz, with CMOS-compatible clocks, show:
 - FWHM \leq 150 eV at 5.9 keV
 - Noise \lesssim 6 electrons RMS, responsivity 21 μ V/electron
 - Serial CTI < 0.8 x 10⁻⁶
- Our NASA-funded SAT program is producing next-gen DCCDs to:
 - Demonstrate noise performance required by HDXI (< 4 e⁻ RMS)
 - Demonstrate soft X-ray (E ~0.3 keV) performance required by HDXI
 - Evaluate radiation tolerance and optimize operating temperature
- DCCDs are an attractive detector technology for Lynx